Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing is bead-lieving

29.07.2014

Rice University scientists create model ‘bead-spring’ chains with tunable properties

Rice University researchers are using magnetic beads and DNA “springs” to create chains of varying flexibility that can be used as microscale models for polymer macromolecules.


DNA linkers serve as bridges between colloidal beads in a new experiment by Rice University scientists to study the physics of “bead-spring” polymer chains. They found the chains can be tuned for varying degrees of stiffness or flexibility. (Credit: Biswal Lab/Rice University)

The experiment is visual proof that “bead-spring” polymers, introduced as theory in the 1950s, can be made as stiff or as flexible as required and should be of interest to materials scientists who study the basic physics of polymers.

The work led by Rice chemical and biomolecular engineer Sibani Lisa Biswal and graduate student Julie Byrom was published this month in the American Chemical Society journal Langmuir. The researchers found the best way to study the theory was to assemble chains of micron-sized colloidal beads with nanoscale DNA springs of various lengths.

“Polymers are classically described as beads connected with springs,” Biswal said. “A lot of polymer physicists have come up with scaling laws and intuitive polymer properties based on this very simple concept. But there are very few bead-spring model systems that you can actually visualize.

That’s why this work came about.” Microscopic solids suspended in a liquid like the fat particles in milk or pigment particles in paint are examples of a colloidal system. Biswal said there has been great interest in creating colloidal molecules, and the Rice experiment is a step in that direction.

To make complex colloidal macromolecules, the researchers started with commercially available, iron-rich polystyrene beads coated with a protein, streptavidin. The beads are charged to repel each other but can connect together with springy DNA fragments. The chains formed when the researchers exposed the beads to a magnetic field. “We use the field to control particle positioning, let the DNA link the beads together and turn the field off,” Biswal said, explaining how the chains self-assemble.

“This is a nice system for polymers, because it’s large enough to visualize individual beads and positioning, but it’s small enough that thermal (Brownian) forces still dictate the chain’s motion.” As expected, when they made chains with short (about 500 base pairs) DNA bridges, the macromolecule remained stiff. Longer linkers (up to 8,000 base pairs) appeared to coil up between the beads, allowing for movement in the chain. Surprisingly, when the researchers reapplied the magnetic field to stretch the long links, they once again became rigid.

“Our vision of what’s happening is that DNA allows some wiggle room between particles and gives the chain elasticity,” Biswal said. “But if the particles are pulled far enough apart, you stress the bridge quite a bit and reduce the freedom it has to move.” Being able to engineer such a wide range of flexibilities allows for more complex materials that can be actuated with magnetic fields, Biswal said. “This research is interesting because until now, people haven’t been able to make flexible chains like this,” Byrom said.

“We want to be able to explain what’s happening across a broad range of polymers, but if you can only make rigid chains, it sort of limits what you can talk about.” Now that they can create polymer chains with predictable behavior, the researchers plan to study how the chains react to shifting magnetic fields over time, as well as how the chains behave in fluid flows. The paper’s co-authors are Rice alum Patric Han and undergraduate Michael Savory. The National Science Foundation supported the research.

Mike Williams | Eurek Alert!
Further information:
http://news.rice.edu/2014/07/28/seeing-is-bead-lieving/

Further reports about: DNA DNA fragments chains macromolecules materials models particles physics polymer macromolecules stiff

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>