Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing is bead-lieving

29.07.2014

Rice University scientists create model ‘bead-spring’ chains with tunable properties

Rice University researchers are using magnetic beads and DNA “springs” to create chains of varying flexibility that can be used as microscale models for polymer macromolecules.


DNA linkers serve as bridges between colloidal beads in a new experiment by Rice University scientists to study the physics of “bead-spring” polymer chains. They found the chains can be tuned for varying degrees of stiffness or flexibility. (Credit: Biswal Lab/Rice University)

The experiment is visual proof that “bead-spring” polymers, introduced as theory in the 1950s, can be made as stiff or as flexible as required and should be of interest to materials scientists who study the basic physics of polymers.

The work led by Rice chemical and biomolecular engineer Sibani Lisa Biswal and graduate student Julie Byrom was published this month in the American Chemical Society journal Langmuir. The researchers found the best way to study the theory was to assemble chains of micron-sized colloidal beads with nanoscale DNA springs of various lengths.

“Polymers are classically described as beads connected with springs,” Biswal said. “A lot of polymer physicists have come up with scaling laws and intuitive polymer properties based on this very simple concept. But there are very few bead-spring model systems that you can actually visualize.

That’s why this work came about.” Microscopic solids suspended in a liquid like the fat particles in milk or pigment particles in paint are examples of a colloidal system. Biswal said there has been great interest in creating colloidal molecules, and the Rice experiment is a step in that direction.

To make complex colloidal macromolecules, the researchers started with commercially available, iron-rich polystyrene beads coated with a protein, streptavidin. The beads are charged to repel each other but can connect together with springy DNA fragments. The chains formed when the researchers exposed the beads to a magnetic field. “We use the field to control particle positioning, let the DNA link the beads together and turn the field off,” Biswal said, explaining how the chains self-assemble.

“This is a nice system for polymers, because it’s large enough to visualize individual beads and positioning, but it’s small enough that thermal (Brownian) forces still dictate the chain’s motion.” As expected, when they made chains with short (about 500 base pairs) DNA bridges, the macromolecule remained stiff. Longer linkers (up to 8,000 base pairs) appeared to coil up between the beads, allowing for movement in the chain. Surprisingly, when the researchers reapplied the magnetic field to stretch the long links, they once again became rigid.

“Our vision of what’s happening is that DNA allows some wiggle room between particles and gives the chain elasticity,” Biswal said. “But if the particles are pulled far enough apart, you stress the bridge quite a bit and reduce the freedom it has to move.” Being able to engineer such a wide range of flexibilities allows for more complex materials that can be actuated with magnetic fields, Biswal said. “This research is interesting because until now, people haven’t been able to make flexible chains like this,” Byrom said.

“We want to be able to explain what’s happening across a broad range of polymers, but if you can only make rigid chains, it sort of limits what you can talk about.” Now that they can create polymer chains with predictable behavior, the researchers plan to study how the chains react to shifting magnetic fields over time, as well as how the chains behave in fluid flows. The paper’s co-authors are Rice alum Patric Han and undergraduate Michael Savory. The National Science Foundation supported the research.

Mike Williams | Eurek Alert!
Further information:
http://news.rice.edu/2014/07/28/seeing-is-bead-lieving/

Further reports about: DNA DNA fragments chains macromolecules materials models particles physics polymer macromolecules stiff

More articles from Materials Sciences:

nachricht A new vortex identification method for 3-D complex flow
04.05.2016 | Science China Press

nachricht Preventing another Flint, Mich.; new research could lead to more corrosion-resistant water pipes
04.05.2016 | Binghamton University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>