Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seed first, heat later for better writing

27.10.2014

A new technique for heat-assisted magnetic recording media promises improved writeability for next-generation hard drives

Heat-assisted magnetic recording (HAMR) is a new process that realizes the three goals of magnetic recording — readability, writeability and stability. A*STAR researchers have now succeeded in improving its writeability by employing a thermal design that permits a higher density recording1.


A seed-then-heat-sink technique for heat-assisted magnetic recording media promises high signal-to-noise ratios.

© stevanovicigor/iStock/Thinkstock

HAMR magnetically records data using a laser to locally heat the area being written. Careful control of the thermal spot size on the medium and the thermal gradient during writing allows more information to be written in a smaller area. The recording medium’s thermal profile is influenced by its physical and chemical properties, such as its optical characteristics, microstructure and layer structure, which impact the recording performance and density.

Jiang Feng Hu and his team from the A*STAR Data Storage Institute wanted to better control the thermal profile. The three layers making up the write layer — the heat-sink layer, underlayer and top layer — must support high thermal gradients. In addition, the top layer should be crystalline with controllable microstructural features. An L10-ordered iron–platinum alloy film is a popular top layer as it exhibits a high magnetic anisotropy.

However, choosing a suitable heat-sink layer is challenging. Copper-based materials are attractive due to their high thermal conductivity, but a mismatch between the structures of the crystalline layer and the underlying magnesium oxide limits the growth of the L10 phase.

Although this mismatch can be corrected by inserting a layer between the heat sink and the underlayer, doing so reduces the thermal performance of HAMR media — “This will produce a smaller thermal gradient and media signal-to-noise ratio (SNR),” explains Hu. This is problematic as a high SNR is a critical measure of recording-media performance.

Hu’s team focused on a technical solution called the ‘seed-then-heat-sink approach’ and corresponding media design. As this design does not require an additional layer, it attains a large thermal gradient and a higher media SNR.

A textured copper nitride film is used as a seed layer to induce an orientation of magnesium oxide that promotes L10-ordered iron–platinum film growth. The subsequent deposition of the iron–platinum alloy film, as a high-temperature process, decomposes copper nitrate into copper, which provides a suitable heat-sink layer.

Hu notes this approach enables a large thermal gradient during the writing process. “This large thermal gradient is critical to the iron–platinum-based medium for HAMR application, especially for HAMR media with smaller grains to support the ultrahigh areal density that HAMR technology is targeting,” says Hu.

Reference
(1) Hu, J. F., Jian, Z. S., Tie, J. Z., Cher, K. M., Bao, X. X, et al. HAMR medium structure design and its process for excellent thermal performance. IEEE Transactions on Magnetics 50, 3201106 (2014). 

Associated links

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>