Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seed first, heat later for better writing

27.10.2014

A new technique for heat-assisted magnetic recording media promises improved writeability for next-generation hard drives

Heat-assisted magnetic recording (HAMR) is a new process that realizes the three goals of magnetic recording — readability, writeability and stability. A*STAR researchers have now succeeded in improving its writeability by employing a thermal design that permits a higher density recording1.


A seed-then-heat-sink technique for heat-assisted magnetic recording media promises high signal-to-noise ratios.

© stevanovicigor/iStock/Thinkstock

HAMR magnetically records data using a laser to locally heat the area being written. Careful control of the thermal spot size on the medium and the thermal gradient during writing allows more information to be written in a smaller area. The recording medium’s thermal profile is influenced by its physical and chemical properties, such as its optical characteristics, microstructure and layer structure, which impact the recording performance and density.

Jiang Feng Hu and his team from the A*STAR Data Storage Institute wanted to better control the thermal profile. The three layers making up the write layer — the heat-sink layer, underlayer and top layer — must support high thermal gradients. In addition, the top layer should be crystalline with controllable microstructural features. An L10-ordered iron–platinum alloy film is a popular top layer as it exhibits a high magnetic anisotropy.

However, choosing a suitable heat-sink layer is challenging. Copper-based materials are attractive due to their high thermal conductivity, but a mismatch between the structures of the crystalline layer and the underlying magnesium oxide limits the growth of the L10 phase.

Although this mismatch can be corrected by inserting a layer between the heat sink and the underlayer, doing so reduces the thermal performance of HAMR media — “This will produce a smaller thermal gradient and media signal-to-noise ratio (SNR),” explains Hu. This is problematic as a high SNR is a critical measure of recording-media performance.

Hu’s team focused on a technical solution called the ‘seed-then-heat-sink approach’ and corresponding media design. As this design does not require an additional layer, it attains a large thermal gradient and a higher media SNR.

A textured copper nitride film is used as a seed layer to induce an orientation of magnesium oxide that promotes L10-ordered iron–platinum film growth. The subsequent deposition of the iron–platinum alloy film, as a high-temperature process, decomposes copper nitrate into copper, which provides a suitable heat-sink layer.

Hu notes this approach enables a large thermal gradient during the writing process. “This large thermal gradient is critical to the iron–platinum-based medium for HAMR application, especially for HAMR media with smaller grains to support the ultrahigh areal density that HAMR technology is targeting,” says Hu.

Reference
(1) Hu, J. F., Jian, Z. S., Tie, J. Z., Cher, K. M., Bao, X. X, et al. HAMR medium structure design and its process for excellent thermal performance. IEEE Transactions on Magnetics 50, 3201106 (2014). 

Associated links

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>