Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret of nanoparticle packing in cement

20.12.2012
Cement production is responsible for 5% of carbon dioxide emissions. If we are to invent a "green" cement, we need to understand in more detail the legendary qualities of traditional Portland cement.

A research group partly financed by the Swiss National Science Foundation (SNSF) is tackling this task.

Discovering the perfect composition of Portland cement, the most common type of cement, was the result of years of experience as well as repeated trials and errors. Emanuela Del Gado, SNSF professor at the Institute for Building Materials of the ETH Zurich, explains that its success is the result of two key factors: its legendary hardness and the availability of its constituent elements.

5% of carbon dioxide emissions
The flipside of the coin: its production requires burning calcium carbonate. This process is responsible for approximately 5% of all carbon dioxide emissions or the equivalent of the entire 2007 emissions of India. But a more sustainable recipe for cement has to meet high standards both in terms of material hardness and accessibility to raw materials.

Because of the massive ecological impact of cement production, various research groups worldwide are trying to understand why the mixture of this powder and water sets to such hardness.

Different densities at the nano level
Researchers of the Massachussetts Institute of Technology (MIT) have concentrated on studying the behaviour of concrete at the nano level. In their experiments, they used an instrument capable of applying mechanical stress at the sub-micro level. As a result, they were able to show that densities vary strongly from one measuring point to the other at this scale. But they were not able to explain why.

This is where physicist Emanuela Del Gado enters the scene. She takes a special interest in amorphous materials whose constituents combine in a disorderly manner. Her studies of such materials focus on the nano level. "It is at this level and not at the atomic level that certain material properties are revealed. This also applies to hydrated calcium silicate, a major component of cement which plays an important role in the setting process," she explains.

Packing particles of different sizes
The researchers first developed a packing model of hydrated calcium silicate nanoparticles. They then devised a method for observing their precipitation based on numerical simulations. This approach has proven successful (*). "We were able to show that the different densities on the nano scale can be explained by the packing of nanoparticles of varying sizes. At this crucial level, the result is greater material hardness than if the particles were of the same size and it corresponds to the established knowledge that, at macroscopic level, aggregates of different sizes form a harder concrete."

Until today, all attempts to reduce or partially replace burnt calcium carbonate in the production of cement have resulted in less material hardness. By gaining a better understanding of the mechanisms at the nano level, it is possible to identify physical and chemical parameters and to improve the carbon footprint of concrete without reducing its hardness.

(*)E. Masoero, E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S. Yip (2012). Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing. Physical Review Letters. DOI: 10.1103/PhysRevLett.109.155503

(available in PDF format from the SNSF; e-mail: com@snf.ch)

Contact
Prof. Dr. Emanuela Del Gado
Institut für Baustoffe
ETH Zürich
CH-8093 Zürich
Tel.: +41 44 633 37 44
E-mail: delgado@ifb.baug.ethz.ch

Prof. Dr. Emanuela Del Gado | idw
Further information:
http://www.snsf.ch
http://www.ethz.ch

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>