Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The First Seconds in a Building’s Life

20.04.2012
X-ray diffraction studies of cement hydration on the millisecond scale

No matter if it is a giant complex, a high-rise, or an underground project, modern architecture cannot get along without concrete. The component in concrete that holds the other components together is cement.

In order to control the properties of concrete, it is important to know what occurs as it hardens. German scientists have now successfully watched the first few seconds in the “life” of cement by means of X-ray diffraction. In the journal Angewandte Chemie, they explain the role of the superplasticizers added to concrete.

Concrete is made from sand, gravel, additives, water, and cement. Portland cement is a complex mixture of finely ground limestone, clay, sand, and iron ore—mainly calcium silicate with fractions of aluminum and iron compounds and sulfates. Once mixed with water, chemical reactions occur between the components of cement, and it solidifies and hardens. When the process is finished, it remains solid and stable, even under water.

The enormous stability of concrete comes from crystalline needles that form during this process and are firmly interlocked with each other. Various additives are used to optimize the properties of concrete, including a class of superplasticizers based on polycarboxylate (PCE). These improve the flow of the concrete, making it easier to pour. The water content can be reduced to improve the concrete’s compressive strength.

“Detailed insight into the different stages of the hydration process is essential for a more complete understanding of how these processes can be effectively influenced,” explains Franziska Emmerling of the BAM Federal Institute of Materials Research and Testing in Berlin (Germany). “In particular, the phase development at the beginning of hydration is not yet well understood.” The very rapidly initiated reaction of the cement clinker component C3A (Ca3Al2O6) with sulfate (SO42-) to form ettringite (Ca6Al2(SO4)3(OH)12•26H2O) seems to be critical. By means of high-resolution X-ray diffraction experiments, Emmerling’s team has now been able to follow this reaction on the millisecond timescale. The deflections experienced by X-rays as they pass through a material provide information about its crystal structure. In order to prevent interference from any supporting material, the sample is held in suspension by acoustic waves.

This has also made it possible to clarify the function of PCE superplasticizers. Says Emmerling: “Immediately after water contacts the cement, the PCE adsorbs onto the surface of the clinker C3A; the particles remain in suspension because they then repel each other. The PCE is then gradually replaced by sulfate ions, which retards the incipient ettringite crystallization. This leaves more free water in the system, dissolving more crystalline components—the resulting concrete can thus flow for a longer period and becomes more dense.”

About the Author
Dr. Franziska Emmerling leads the department of Structure Analysis at the Federal Institute for Materials Research and Testing (BAM) in Berlin. Her main research areas include the in-situ analysis of different material systems using synchrotron radiation. Besides that, she lectures since two year at the Humboldt University in Berlin in the field of anorganic and solid state chemistry.
Author: Franziska Emmerling, BAM Federal Institute of Materials Research and Testing, Berlin (Germany), http://www.bam.de/de/kompetenzen/fachabteilungen/abteilung_1/fg13/fg13_ag1.htm
Title: First Seconds in a Building’s Life—In Situ Synchrotron X-Ray Diffraction Study of Cement Hydration on the Millisecond Timescale

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201200993

Franziska Emmerling | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Less is more to produce top-notch 2D materials
20.11.2017 | The Agency for Science, Technology and Research (A*STAR)

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>