Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scotch tape finds new use as grasping 'smart material'

21.11.2012
Scotch tape, a versatile household staple and a mainstay of holiday gift-wrapping, may have a new scientific application as a shape-changing "smart material."
Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.

The innovation could be used to collect water samples for environmental testing, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

The Scotch tape - made from a cellulose-acetate sheet and an adhesive - is uniquely suited for the purpose.

"It can be micromachined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions," he said.

Doctoral student Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.

"So, when one side absorbs water it expands, the other side stays the same, causing it to curl," Ziaie said.

A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with magnetic nanoparticles so that they could be collected with a magnet.

"Say you were sampling for certain bacteria in water," Ziaie said. "You could drop a bunch of these and then come the next day and collect them."

Findings will be detailed in a presentation during a meeting of the Materials Research Society in Boston from Sunday (Nov. 25) to Nov. 30. Experiments at Purdue's Birck Nanotechnology Center were conducted by Ochoa, doctoral student Girish Chitnis and Ziaie.

The grippers close underwater within minutes and can sample one-tenth of a milliliter of liquid.

"Although brittle when dry, the material becomes flexible when immersed in water and is restored to its original shape upon drying, a crucial requirement for an actuator material because you can use it over and over," Ziaie said. "Various microstructures can be carved out of the tape by using laser machining. This fabrication method offers the capabilities of rapid prototyping and batch processing without the need for complex clean-room processes."
An animated GIF of the gripper closing is available at https://engineering.purdue.edu/ZBML/img/research/plain-gripper-closing.gif

The materials might be "functionalized" so that they attract specific biochemicals or bacteria in water.

The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. (Manuel Ochoa, Purdue University) A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers.jpg

Credit: Manuel Ochoa, Purdue University

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Babak Ziaie, 765-494-0725, bziaie@purdue.edu

Manuel Ochoa, ochoam@purdue.edu

Related websites:

Babak Ziaie: https://engineering.purdue.edu/ECE/People/profile?resource_id=2839

Birck Nanotechnology Center: http://www.purdue.edu/discoverypark/nanotechnology/

Other animated GIFs using the material to create a mini-Purdue logo:
https://engineering.purdue.edu/ZBML/img/research/pu-tape-1-small.gif
https://engineering.purdue.edu/ZBML/img/research/pu-tape-2-small.gif
IMAGE CAPTION:
The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. (Manuel Ochoa, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers.jpg

IMAGE CAPTION:

The graspers were coated with magnetic particles, which could allow researchers to retrieve the devices in the field by using a magnet. (Manuel Ochoa, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers2.jpg

ABSTRACT

Laser-Micromachined Magnetically-Functionalized Hygroscopic Bilayer: A Low-Cost Smart Material

Manuel Ochoa 1,4, Girish Chitnis 2,4, and Babak Ziaie 1,3,4*

1School of Electrical and Computer Engineering, Purdue University

2School of Mechanical Engineering

3 Weldon School of Biomedical Engineering

4Birck Nanotechnology Center

In this paper, we describe the design, fabrication, and characterization of magnetically functionalized humidity-responsive bilayers. We investigated two different ferrofluid embedded material structures: 1) cellulose-acetate sheet bonded to an acetate-backed adhesive (3M Scotch® GiftWrap Tape) (CA/GWT) and 2) a commercially available acetate-backed adhesive (3M Scotch® MagicTape) (MT). Cantilevers and other mechanical structures such as grippers were fabricated using laser micro-machining and exposed to humidity and magnetic fields. Such bilayers take advantage of the hygroscopic properties of cellulose acetate for their humidity response while simultaneously allowing one to remotely manipulate the structure using a magnetic field. The maximum radius of curvature in a humidity saturated environment for a CA/GWT cantilever (2 mm × 19 mm × 157 µm) was measured to be 7 mm, whereas the MT showed a smaller radius of curvature (

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>