Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scotch tape finds new use as grasping 'smart material'

21.11.2012
Scotch tape, a versatile household staple and a mainstay of holiday gift-wrapping, may have a new scientific application as a shape-changing "smart material."
Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.

The innovation could be used to collect water samples for environmental testing, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

The Scotch tape - made from a cellulose-acetate sheet and an adhesive - is uniquely suited for the purpose.

"It can be micromachined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions," he said.

Doctoral student Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.

"So, when one side absorbs water it expands, the other side stays the same, causing it to curl," Ziaie said.

A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with magnetic nanoparticles so that they could be collected with a magnet.

"Say you were sampling for certain bacteria in water," Ziaie said. "You could drop a bunch of these and then come the next day and collect them."

Findings will be detailed in a presentation during a meeting of the Materials Research Society in Boston from Sunday (Nov. 25) to Nov. 30. Experiments at Purdue's Birck Nanotechnology Center were conducted by Ochoa, doctoral student Girish Chitnis and Ziaie.

The grippers close underwater within minutes and can sample one-tenth of a milliliter of liquid.

"Although brittle when dry, the material becomes flexible when immersed in water and is restored to its original shape upon drying, a crucial requirement for an actuator material because you can use it over and over," Ziaie said. "Various microstructures can be carved out of the tape by using laser machining. This fabrication method offers the capabilities of rapid prototyping and batch processing without the need for complex clean-room processes."
An animated GIF of the gripper closing is available at https://engineering.purdue.edu/ZBML/img/research/plain-gripper-closing.gif

The materials might be "functionalized" so that they attract specific biochemicals or bacteria in water.

The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. (Manuel Ochoa, Purdue University) A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers.jpg

Credit: Manuel Ochoa, Purdue University

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Babak Ziaie, 765-494-0725, bziaie@purdue.edu

Manuel Ochoa, ochoam@purdue.edu

Related websites:

Babak Ziaie: https://engineering.purdue.edu/ECE/People/profile?resource_id=2839

Birck Nanotechnology Center: http://www.purdue.edu/discoverypark/nanotechnology/

Other animated GIFs using the material to create a mini-Purdue logo:
https://engineering.purdue.edu/ZBML/img/research/pu-tape-1-small.gif
https://engineering.purdue.edu/ZBML/img/research/pu-tape-2-small.gif
IMAGE CAPTION:
The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. (Manuel Ochoa, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers.jpg

IMAGE CAPTION:

The graspers were coated with magnetic particles, which could allow researchers to retrieve the devices in the field by using a magnet. (Manuel Ochoa, Purdue University)

A publication-quality image is available at http://news.uns.purdue.edu/images/2012/ziaie-grippers2.jpg

ABSTRACT

Laser-Micromachined Magnetically-Functionalized Hygroscopic Bilayer: A Low-Cost Smart Material

Manuel Ochoa 1,4, Girish Chitnis 2,4, and Babak Ziaie 1,3,4*

1School of Electrical and Computer Engineering, Purdue University

2School of Mechanical Engineering

3 Weldon School of Biomedical Engineering

4Birck Nanotechnology Center

In this paper, we describe the design, fabrication, and characterization of magnetically functionalized humidity-responsive bilayers. We investigated two different ferrofluid embedded material structures: 1) cellulose-acetate sheet bonded to an acetate-backed adhesive (3M Scotch® GiftWrap Tape) (CA/GWT) and 2) a commercially available acetate-backed adhesive (3M Scotch® MagicTape) (MT). Cantilevers and other mechanical structures such as grippers were fabricated using laser micro-machining and exposed to humidity and magnetic fields. Such bilayers take advantage of the hygroscopic properties of cellulose acetate for their humidity response while simultaneously allowing one to remotely manipulate the structure using a magnetic field. The maximum radius of curvature in a humidity saturated environment for a CA/GWT cantilever (2 mm × 19 mm × 157 µm) was measured to be 7 mm, whereas the MT showed a smaller radius of curvature (

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>