Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Networks of Metal Nanoparticles Are Culprits in Alloy Corrosion

06.08.2008
Oxide scales are supposed to protect alloys from extensive corrosion, but scientists at U.S. Department of Energy's Argonne National Laboratory have discovered metal nanoparticle chinks in this armor.

Oxide scales develop on the outer surface of alloys at high temperatures creating a protective barrier that keeps destructive carbon-bearing molecules from slipping into the alloy. The diffusion of carbon into oxide scales should be negligible, but studies have shown that carbon can sneak through the oxide line of defense leading to brittleness and corrosion.

"The United States loses four percent of the gross national product due to alloy corrosion," Argonne Distinguished Fellow Ken Natesan said. "A network of continuous metal nanoparticles allow the carbon to dissolve and diffuse through the protective oxide scales without the need of a crack or a pore."

It was commonly believed that carbon-containing molecules escaped into cracks or pores in the oxide scales, but using three separate techniques -- nanobeam x-ray analysis at the Advanced Photon Source, magnetic force microscopy at the Center for Nanoscale Materials and scanning electron microscopy at the Electron Microscopy Center -- Natesan, along with Argonne scientists Zuotao Zeng, Seth Darling and Zhonghou Cai, discovered networks of iron and nickel nanoparticles embedded within the oxide scales.

Carbon can easily diffuse through the metals and create a path for carbon atom transport which does not involve defects in the scale.

"By examining the oxide scale, we find the metal nanoparticles," Zeng said. "If they are eliminated we can create a more corrosion-resistant and longer lasting alloy."

Based on the study, ANL has developed laboratory size batches of materials that exhibit as much as ten times longer life than commercial alloys with similar chromium contents, Natesan said. At present, 50-lb batches of the alloys have been cast successfully by an alloy manufacturer and will be commercialized in due course. The ANL-developed alloys are of considerable interest to the chemical, petrochemical, and refining industry.

The findings might also have broad influence on not only metal dusting and carburization, but also in other research areas such as alloy development and surface coatings for high-temperature fuel cell applications.

Funding for this research was provided by the U.S. Department of Energy, Office of Industrial Technologies. The Argonne scientific user facilities such as the Advanced Photon Source, Electron Microscopy Center and Center for Nanoscale Materials are supported by the U.S. Department of Energy, Office of Science.

A paper based on this work has been published recently in Nature Materials.

Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | Newswise Science News
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>