Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Networks of Metal Nanoparticles Are Culprits in Alloy Corrosion

06.08.2008
Oxide scales are supposed to protect alloys from extensive corrosion, but scientists at U.S. Department of Energy's Argonne National Laboratory have discovered metal nanoparticle chinks in this armor.

Oxide scales develop on the outer surface of alloys at high temperatures creating a protective barrier that keeps destructive carbon-bearing molecules from slipping into the alloy. The diffusion of carbon into oxide scales should be negligible, but studies have shown that carbon can sneak through the oxide line of defense leading to brittleness and corrosion.

"The United States loses four percent of the gross national product due to alloy corrosion," Argonne Distinguished Fellow Ken Natesan said. "A network of continuous metal nanoparticles allow the carbon to dissolve and diffuse through the protective oxide scales without the need of a crack or a pore."

It was commonly believed that carbon-containing molecules escaped into cracks or pores in the oxide scales, but using three separate techniques -- nanobeam x-ray analysis at the Advanced Photon Source, magnetic force microscopy at the Center for Nanoscale Materials and scanning electron microscopy at the Electron Microscopy Center -- Natesan, along with Argonne scientists Zuotao Zeng, Seth Darling and Zhonghou Cai, discovered networks of iron and nickel nanoparticles embedded within the oxide scales.

Carbon can easily diffuse through the metals and create a path for carbon atom transport which does not involve defects in the scale.

"By examining the oxide scale, we find the metal nanoparticles," Zeng said. "If they are eliminated we can create a more corrosion-resistant and longer lasting alloy."

Based on the study, ANL has developed laboratory size batches of materials that exhibit as much as ten times longer life than commercial alloys with similar chromium contents, Natesan said. At present, 50-lb batches of the alloys have been cast successfully by an alloy manufacturer and will be commercialized in due course. The ANL-developed alloys are of considerable interest to the chemical, petrochemical, and refining industry.

The findings might also have broad influence on not only metal dusting and carburization, but also in other research areas such as alloy development and surface coatings for high-temperature fuel cell applications.

Funding for this research was provided by the U.S. Department of Energy, Office of Industrial Technologies. The Argonne scientific user facilities such as the Advanced Photon Source, Electron Microscopy Center and Center for Nanoscale Materials are supported by the U.S. Department of Energy, Office of Science.

A paper based on this work has been published recently in Nature Materials.

Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | Newswise Science News
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>