Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists come closer to the industrial synthesis of a material harder than diamond

15.09.2014

Researchers from the Technological Institute for Superhard and Novel Carbon Materials in Troitsk, MIPT, MISiS, and MSU have developed anew method for the synthesis of an ultrahard material that exceeds diamond in hardness. An article recently published in the journal Carbon describes in detail a method that allows for the synthesis of ultrahard fullerite, a polymer composed of fullerenes, or spherical molecules made of carbon atoms.

In their work, the scientists note that diamond hasn’t been the hardest material for some time now. Natural diamonds have a hardness of nearly 150 GPa, but ultrahard fullerite has surpassed diamond to become first on the list of hardest materials with values that range from 150 to 300 GPa. 


Photo of a Vickers indenter made of ultrahard fullerite. Courtesy of MikhailPopov

All materials that are harder than diamond are called ultra hard materials. Materials softer than diamond but harder than boron nitride are termedsuperhard. Boron nitride, with its cubic lattice, is almost three times harder than the well-known corundum.  

Fullerites are materials that consist of fullerenes. In their turn, fullerenes are carbon molecules in the form of spheres consisting of 60 atoms. Fullerene was first synthesized more than 20 years ago, and a Nobel Prize was awarded for that work.

... more about:
»Carbon »Diamond »FSBI »Fullerene »MSU »pressure »synthesis »temperature

The carbon spheres within fullerite can be arranged in different ways, and the material’s hardness largely depends on just how interconnected they are. In the ultrahard fullerite discovered by the workers at the Technological Institutefor Superhard and Novel Carbon Materials (FSBITISNCM), C 60 molecules are interconnected by covalent bonds in all directions, a material scientists call a three-dimensional polymer. 

However, the methods providing production of this promising material on an industrial scale are not available yet. Practically, the superhard carbon form is of primary interest for specialists in the field of metals and other materials processing: the harder a tool is, the longer it works, and the more qualitatively the details can be processed.   

What makes synthesizing fullerite in large quantities so difficult is the high pressure required for the reaction to begin. Formation of the three-dimensional polymer begins at a pressure of 13 GPa, or 130,000 atm. But modern equipment cannot provide such pressure on a large scale.

The scientists in the current study have shown that adding carbon disulfide (CS 2 ) to the initial mixture of reagents can accelerate fullerite synthesis. This substance is synthesized on an industrial scale, is actively used in various enterprises, and the technologies for working with it are well-developed.

According to experiments, carbon disulfide is an end product, but here it acts as an accelerator. Using CS 2 , the formation of the valuable superhard material becomes possible even if the pressure is lower and amounts to 8GPa. In addition, while previous efforts to synthesize fullerite at a pressure of 13 GPa required heating up to 1100K (more than 820 degrees Celsius),in the present case it occurs at room temperature.  

“The discovery described in this article (the catalytic synthesis of ultrahard fullerite) will create a new research area in materials science because it substantially reduces the pressure required for synthesis and allows for manufacturing the material and its derivatives on an industrial scale”, explained Mikhail Popov, the leading author of the research and the head of the laboratory of functional nanomaterials at FSBI TISNCM.  

Note: Ultrahard fullerite is described in greater detail in the following scientific publications:  

  1. Is C 60 fullerite harder than diamond? V.Blank, M.Popov, S.Buga, V.Davydov, V.N. Denisov, A.N. Ivlev, B.N. Mavrin, V.Agafonov, R.Ceolin, H.Szwarc, A.Rassat. Physics Letters A Vol.188 (1994) P 281-286.

  2. Structures and physical properties of superhard and ultrahard 3D polymerized fullerites created from solid C60 by high pressure high temperature treatment. V.D. Blank, S.G. Buga, N.R. Serebryanaya, G.A. Dubitsky, B. Mavrin, M.Yu. Popov, R.H. Bagramov, V.M. Prokhorov, S.A. Sulynov, B.A. Kulnitskiy and Ye.V.  Tatyanin. Carbon, V.36, P 665-670 (1998)

  3. Ultrahard and superhard phases of fullerite C60 : comparison with diamond on hardness and wear. V.Blank, M.Popov, G.Pivovarov, N.Lvova, K.Gogolinsky, V.Reshetov. Diamond and Related Materials. Vol. 7, No 2-5 (1998), P 427-431

MIPT’s press service would like to thank scientists for their invaluable help in writing this article.

Alexandra O. Borissova | Eurek Alert!
Further information:
http://mipt.ru/en/news/harder_than_diamond_201409

Further reports about: Carbon Diamond FSBI Fullerene MSU pressure synthesis temperature

More articles from Materials Sciences:

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

nachricht Flexible proximity sensor creates smart surfaces
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>