Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists come closer to the industrial synthesis of a material harder than diamond

15.09.2014

Researchers from the Technological Institute for Superhard and Novel Carbon Materials in Troitsk, MIPT, MISiS, and MSU have developed anew method for the synthesis of an ultrahard material that exceeds diamond in hardness. An article recently published in the journal Carbon describes in detail a method that allows for the synthesis of ultrahard fullerite, a polymer composed of fullerenes, or spherical molecules made of carbon atoms.

In their work, the scientists note that diamond hasn’t been the hardest material for some time now. Natural diamonds have a hardness of nearly 150 GPa, but ultrahard fullerite has surpassed diamond to become first on the list of hardest materials with values that range from 150 to 300 GPa. 


Photo of a Vickers indenter made of ultrahard fullerite. Courtesy of MikhailPopov

All materials that are harder than diamond are called ultra hard materials. Materials softer than diamond but harder than boron nitride are termedsuperhard. Boron nitride, with its cubic lattice, is almost three times harder than the well-known corundum.  

Fullerites are materials that consist of fullerenes. In their turn, fullerenes are carbon molecules in the form of spheres consisting of 60 atoms. Fullerene was first synthesized more than 20 years ago, and a Nobel Prize was awarded for that work.

... more about:
»Carbon »Diamond »FSBI »Fullerene »MSU »pressure »synthesis »temperature

The carbon spheres within fullerite can be arranged in different ways, and the material’s hardness largely depends on just how interconnected they are. In the ultrahard fullerite discovered by the workers at the Technological Institutefor Superhard and Novel Carbon Materials (FSBITISNCM), C 60 molecules are interconnected by covalent bonds in all directions, a material scientists call a three-dimensional polymer. 

However, the methods providing production of this promising material on an industrial scale are not available yet. Practically, the superhard carbon form is of primary interest for specialists in the field of metals and other materials processing: the harder a tool is, the longer it works, and the more qualitatively the details can be processed.   

What makes synthesizing fullerite in large quantities so difficult is the high pressure required for the reaction to begin. Formation of the three-dimensional polymer begins at a pressure of 13 GPa, or 130,000 atm. But modern equipment cannot provide such pressure on a large scale.

The scientists in the current study have shown that adding carbon disulfide (CS 2 ) to the initial mixture of reagents can accelerate fullerite synthesis. This substance is synthesized on an industrial scale, is actively used in various enterprises, and the technologies for working with it are well-developed.

According to experiments, carbon disulfide is an end product, but here it acts as an accelerator. Using CS 2 , the formation of the valuable superhard material becomes possible even if the pressure is lower and amounts to 8GPa. In addition, while previous efforts to synthesize fullerite at a pressure of 13 GPa required heating up to 1100K (more than 820 degrees Celsius),in the present case it occurs at room temperature.  

“The discovery described in this article (the catalytic synthesis of ultrahard fullerite) will create a new research area in materials science because it substantially reduces the pressure required for synthesis and allows for manufacturing the material and its derivatives on an industrial scale”, explained Mikhail Popov, the leading author of the research and the head of the laboratory of functional nanomaterials at FSBI TISNCM.  

Note: Ultrahard fullerite is described in greater detail in the following scientific publications:  

  1. Is C 60 fullerite harder than diamond? V.Blank, M.Popov, S.Buga, V.Davydov, V.N. Denisov, A.N. Ivlev, B.N. Mavrin, V.Agafonov, R.Ceolin, H.Szwarc, A.Rassat. Physics Letters A Vol.188 (1994) P 281-286.

  2. Structures and physical properties of superhard and ultrahard 3D polymerized fullerites created from solid C60 by high pressure high temperature treatment. V.D. Blank, S.G. Buga, N.R. Serebryanaya, G.A. Dubitsky, B. Mavrin, M.Yu. Popov, R.H. Bagramov, V.M. Prokhorov, S.A. Sulynov, B.A. Kulnitskiy and Ye.V.  Tatyanin. Carbon, V.36, P 665-670 (1998)

  3. Ultrahard and superhard phases of fullerite C60 : comparison with diamond on hardness and wear. V.Blank, M.Popov, G.Pivovarov, N.Lvova, K.Gogolinsky, V.Reshetov. Diamond and Related Materials. Vol. 7, No 2-5 (1998), P 427-431

MIPT’s press service would like to thank scientists for their invaluable help in writing this article.

Alexandra O. Borissova | Eurek Alert!
Further information:
http://mipt.ru/en/news/harder_than_diamond_201409

Further reports about: Carbon Diamond FSBI Fullerene MSU pressure synthesis temperature

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>