Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce the quest for high-index materials

24.07.2017

All-dielectric nanophotonics: The quest for better materials and fabrication techniques

In order to send, receive, and process electromagnetic signals, antennas are used. An antenna is a device capable of effectively transmitting, picking up, and redirecting electromagnetic radiation. Typically, one thinks of antennas as macroscopic devices operating in the radio and microwave range. However, there are similar optical devices (Fig. 1).


Fig. 1. Optical nanoantenna.

Credit: Researchers from MIPT and ITMO University

The wavelengths of visible light amount to several hundred nanometers. As a consequence, optical antennas are, by necessity, nanosized devices. Optical nanoantennas, which can focus, direct, and effectively transmit light, have a wide range of applications, including information transmission over optical channels, photodetection, microscopy, biomedical technology, and even speeding up chemical reactions.

For an antenna to pick up and transmit signals efficiently, its elements need to be resonant. In the radio band, such elements are pieces of wire. In the optical range, silver and gold nanoparticles with plasmonic resonances (Fig. 2a) have long been used for this purpose. Electromagnetic fields in such particles can be localized on a scale of 10 nanometers or less, but most of the energy of the field is wasted due to Joule heating of the conducting metal.

There is an alternative to plasmonic nanoparticles, which has been studied extensively for the last five years, namely particles of dielectric materials with high refractive indices at visible light frequencies, such as silicon. When the size of the dielectric particle and the wavelength of light are just right, the particle supports optical resonances of a particular kind, called Mie resonances (Fig. 2b). Because the material properties of dielectrics are different from those of metals, it is possible to significantly reduce resistive heating by replacing plasmonic nanoantennas with dielectric analogs.

The key characteristic of a material determining Mie resonance parameters is the refractive index. Particles made of materials with high refractive indices have resonances characterized by high quality factors. This means that in these materials electromagnetic oscillations last longer without external excitation. In addition, higher refractive indices correspond to smaller particle diameters, allowing for more miniature optical devices. These factors make high-index materials -- i.e., those with high indices of refraction -- more suitable for the implementation of dielectric nanoantennas.

In their paper published in Optica, the researchers systematically examine the available high-index materials in terms of their resonances in the visible and infrared spectral ranges. Materials of this kind include semiconductors and polar crystals, such as silicon carbide. To illustrate the behavior of various materials, the authors present their associated quality factors, which indicate how quickly oscillations excited by incident light die out.

Theoretical analysis enabled the researchers to identify crystalline silicon as the best currently available material for the realization of dielectric antennas operating in the visible range, with germanium outperforming other materials in the infrared band. In the mid-infrared part of the spectrum, which is of particular interest due to possible applications, such as radiative cooling, i.e., the cooling of a heated body by means of radiating heat in the form of electromagnetic waves into the environment; and thermal camouflage -- reducing thermal radiation given off by an object, thus making it invisible to infrared cameras, the compound of germanium and tellurium took the pedestal, Fig. 3.

There are fundamental limitations on the value of the quality factor. It turns out that high refractive indices in semiconductors are associated with interband transitions of electrons, which inevitably entail the absorption of energy carried by the incident light. This absorption in turn leads to a reduction of the quality factor, as well as heating, and that is precisely what the researchers are trying to get rid of. There is, therefore, a delicate balance between a high index of refraction and energy losses.

"This study is special both because it offers the most complete picture of high-index materials, showing which of them is optimal for fabricating a nanoantenna operating in this spectral range, and because it provides an analysis of the manufacturing processes involved," notes Dmitry Zuev, research scientist at the Metamaterials laboratory of the Faculty of Physics and Engineering, ITMO University. "This enables a researcher to select a material, as well as the desired manufacturing technique, taking into account the requirements imposed by their specific situation. This is a powerful tool furthering the design and experimental realization of a wide range of dielectric nanophotonic devices."

According to the overview of manufacturing techniques, silicon, germanium, and gallium arsenide are the most thoroughly studied high-index dielectrics used in nanophotonics. A wide range of methods are available for manufacturing resonant nanoantennas based on these materials, including lithographic, chemical, and laser-assisted methods. However, in the case of some materials, no technology for fabrication of resonant nanoparticles has been developed. For example, researchers have yet to come up with ways of making nanoantennas from germanium telluride, whose properties in the mid-infrared range were deemed the most attractive by the theoretical analysis.

"Silicon is currently, beyond any doubt, the most widely used material in dielectric nanoantenna manufacturing," says Denis Baranov, a PhD student at MIPT. "It is affordable, and silicon-based fabrication techniques are well established. Also, and this is important, it is compatible with the CMOS technology, an industry standard in semiconductor engineering. But silicon is not the only option. Other materials with even higher refractive indices in the optical range might exist. If they are discovered, this would mean great news for dielectric nanophotonics."

The research findings obtained by the team could be used by nanophotonics engineers to develop new resonant nanoantennas based on high-index dielectric materials. Besides, the paper suggests further theoretical and experimental work devoted to the search for other high-index materials with superior properties to be used in new improved dielectric nanoantennas. Such materials could, among other things, be used to considerably boost the efficiency of radiative cooling of solar cells, which would constitute an important technological advance.

Media Contact

Asya Shepunova
shepunova@phystech.edu
7-916-813-0267

 @phystech

https://mipt.ru/english/ 

Asya Shepunova | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>