Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Safe Is Nano?

28.01.2011
Nanotoxicology: An interdisciplinary challenge

The rapid development of nanotechnology has increased fears about the health risks of nano-objects. Are these fears justified? Do we need a new discipline, nanotoxicology, to evaluate the risks? Harald F. Krug and Peter Wick of the Swiss Federal Laboratories for Materials Science and Technology discuss these questions in the journal Angewandte Chemie.

“Research into the safety of nanotechnology combines biology, chemistry, and physics with workplace hygiene, materials science, and engineering to create a truly interdisciplinary research field,” explain Krug and Wick. “There are several factors to take into account in the interaction of nano-objects with organisms,” they add. The term nanotoxicology is fully justified. “Nanoscale particles can enter into cells by other means of transport than larger particles.” Another critical feature is the large surface area of nano-objects relative to their volume. If a similar amount of substance is absorbed, an organism comes into contact with a significantly larger number of molecules with nanoparticles than with larger particles. Dose–effect relationships cannot therefore be assumed to be the same. Furthermore, chemical and physical effects that do not occur with larger particles may arise. “Whether the larger or smaller particle is more toxic in any given case cannot be predicted,” according to the authors. “Clearly, the type of chemical compound involved and its conformation in a specific case can also not be ignored.” Carbon in the form of diamond nanoparticles is harmless, whereas in the form of nanotubes—depending on length and degree of aggregation—it may cause health problems. It is also thus impossible to avoid considering each nanomaterial in turn.

For a risk assessment, it is also necessary to keep in mind what dosage would be considered realistic and that not every observed biological effect automatically equates to a health risk.

Krug and Wick indicate that a large amount of data about the biological effects of nanomaterials is available, but not all studies are reliable. Sometimes it is not possible to reproduce the specific material tested or the conditions. “By pointing out methodological inadequacies and making concrete recommendations for avoiding them, we are hoping to contribute to a lasting improvement in the data,” state Krug and Wick.

About the authors: Krug is Director of the “Materials Meet Life” department at the Swiss Federal Laboratories for Materials Science and Technology (Empa), member of the Governing Board of the DECHEMA (Society for Chemical Engineering and Biotechnology) working group on the responsible use of nanomaterials, and advises German federal government departments, as well as government departments in Switzerland, on the subject of nanotechnology. Wick is Director of the Materials-Biology Interactions division of Empa and works on national and international projects concerned with nano-safety as well as serving on the Editorial Board of the journal Nanotoxicology.

Author: Harald F. Krug, Empa–Materials Science & Technology, St. Gallen (Switzerland), http://www.empa.ch/abt274

Title: Nanotoxicology: An Interdisciplinary Challenge

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201001037

Harald F. Krug | Angewandte Chemie
Further information:
http://www.empa.ch/abt274
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>