Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Safe Is Nano?

28.01.2011
Nanotoxicology: An interdisciplinary challenge

The rapid development of nanotechnology has increased fears about the health risks of nano-objects. Are these fears justified? Do we need a new discipline, nanotoxicology, to evaluate the risks? Harald F. Krug and Peter Wick of the Swiss Federal Laboratories for Materials Science and Technology discuss these questions in the journal Angewandte Chemie.

“Research into the safety of nanotechnology combines biology, chemistry, and physics with workplace hygiene, materials science, and engineering to create a truly interdisciplinary research field,” explain Krug and Wick. “There are several factors to take into account in the interaction of nano-objects with organisms,” they add. The term nanotoxicology is fully justified. “Nanoscale particles can enter into cells by other means of transport than larger particles.” Another critical feature is the large surface area of nano-objects relative to their volume. If a similar amount of substance is absorbed, an organism comes into contact with a significantly larger number of molecules with nanoparticles than with larger particles. Dose–effect relationships cannot therefore be assumed to be the same. Furthermore, chemical and physical effects that do not occur with larger particles may arise. “Whether the larger or smaller particle is more toxic in any given case cannot be predicted,” according to the authors. “Clearly, the type of chemical compound involved and its conformation in a specific case can also not be ignored.” Carbon in the form of diamond nanoparticles is harmless, whereas in the form of nanotubes—depending on length and degree of aggregation—it may cause health problems. It is also thus impossible to avoid considering each nanomaterial in turn.

For a risk assessment, it is also necessary to keep in mind what dosage would be considered realistic and that not every observed biological effect automatically equates to a health risk.

Krug and Wick indicate that a large amount of data about the biological effects of nanomaterials is available, but not all studies are reliable. Sometimes it is not possible to reproduce the specific material tested or the conditions. “By pointing out methodological inadequacies and making concrete recommendations for avoiding them, we are hoping to contribute to a lasting improvement in the data,” state Krug and Wick.

About the authors: Krug is Director of the “Materials Meet Life” department at the Swiss Federal Laboratories for Materials Science and Technology (Empa), member of the Governing Board of the DECHEMA (Society for Chemical Engineering and Biotechnology) working group on the responsible use of nanomaterials, and advises German federal government departments, as well as government departments in Switzerland, on the subject of nanotechnology. Wick is Director of the Materials-Biology Interactions division of Empa and works on national and international projects concerned with nano-safety as well as serving on the Editorial Board of the journal Nanotoxicology.

Author: Harald F. Krug, Empa–Materials Science & Technology, St. Gallen (Switzerland), http://www.empa.ch/abt274

Title: Nanotoxicology: An Interdisciplinary Challenge

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201001037

Harald F. Krug | Angewandte Chemie
Further information:
http://www.empa.ch/abt274
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>