Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RWTH Aachen and Maastricht University establish Cooperation on Advanced Biobased Materials

Maastricht University and RWTH Aachen University intend to establish a European cross border research institute on advanced biobased materials.

Situated at the Chemelot Chemical Innovation Community in the Province of Limburg, NL, partners strive for excellence in most modern biobased materials science.

Researchers of international reputation will support the new cooperation between Maastricht University and RWTH Aachen University and companies at Chemelot. The Chemelot Campus focuses on “CHEMaterials“ (Chemistry and Materials) and is developing into a unique open innovation campus in a triple helix cooperation of DSM, the Province of Limburg and Maastricht University.

With this initiative the Maastricht University advances its ambition to further develop research in natural sciences and technology in connection to the co-development of the Chemelot Campus and contributes to the international ambition of Brainport 2020. RWTH provides essential engineering expertise for this development. By establishing their joint cross border research institute at Chemelot, Maastricht University and RWTH Aachen University are aiming for a paradigm change in new materials, which will substitute traditional building blocks for polymer materials on a sustainable basis and support the development of novel materials.

The new research institute will focus on plant-based feedstock as the resource of future. The research is directed towards a biobased polymer materials technology, on one hand driven by the limited availability of fossil feedstock and the concerns of climate change by the use of consumptive technologies, on the other hand intended to capitalize on new prospects to obtain complex and valuable building blocks and polymers directly from plants.

The location at the Chemelot Campus will enable close collaboration with existing industries and will allow the formation of new public-private networks with SMEs and future start-ups. This way transfer from the lab bench to process engineering and innovation will be promoted and accelerated.

The partners will contribute to the project with their individual strengths and capabilities, mainly the molecular biology, plant biotechnology, molecular and process engineering sciences and medical technology in Aachen and the biology, computational sciences, biomaterials science and clinical expertise of Maastricht.

Key research ambitions will be (i) the use of natural plants as production plants for advanced biobased building blocks and macromolecules, (ii) chemical transformation of such building blocks for higher functionality, (iii) processing and compounding of biobased building blocks and polymers into application driven materials and (iv) development of biobased, bioactive materials for clinical use, including applications in regenerative medicine.

This cooperation of excellence between Maastricht and Aachen will establish teams of young and ambitious scientists who will work under the lead of three professors at Chemelot. Selections for human resources will start early 2012 and start of activities at Chemelot is proposed for mid-2012. The researchers will have lab facilities and office space at Chemelot, as well as access rights to all facilities in both universities. The start-up funding for the excellence initiative is committed by Aachen and Maastricht.

Note for the press
The UM Marketing & Communications Department can be contacted on +31 43 388 5222 or at For urgent matters outside office hours, please call +31 6 4602 4992. Press releases issued by Maastricht University can be found at Please refer to the Research Magazine at for interesting research being carried out at UM.

Caroline Roulaux | idw
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>