Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers discovery paves way for development of efficient, inexpensive plastic solar cells

11.10.2010
Finding reported in Nature Materials journal could boost role of solar-generated electricity as alternative to fossil fuels

Physicists at Rutgers University have discovered new properties in a material that could result in efficient and inexpensive plastic solar cells for pollution-free electricity production.

The discovery, posted online and slated for publication in an upcoming issue of the journal Nature Materials, reveals that energy-carrying particles generated by packets of light can travel on the order of a thousand times farther in organic (carbon-based) semiconductors than scientists previously observed. This boosts scientists' hopes that solar cells based on this budding technology may one day overtake silicon solar cells in cost and performance, thereby increasing the practicality of solar-generated electricity as an alternate energy source to fossil fuels.

"Organic semiconductors are promising for solar cells and other uses, such as video displays, because they can be fabricated in large plastic sheets," said Vitaly Podzorov, assistant professor of Physics at Rutgers. "But their limited photo-voltaic conversion efficiency has held them back. We expect our discovery to stimulate further development and progress."

Podzorov and his colleagues observed that excitons – particles that form when semiconducting materials absorb photons, or light particles – can travel a thousand times farther in an extremely pure crystal organic semiconductor called rubrene. Until now, excitons were typically observed to travel less than 20 nanometers – billionths of a meter – in organic semiconductors.

"This is the first time we observed excitons migrating a few microns," said Podzorov, noting that they measured diffusion lengths from two to eight microns, or millionths of a meter. This is similar to exciton diffusion in inorganic solar cell materials such as silicon and gallium arsenide.

"Once the exciton diffusion distance becomes comparable to the light absorption length, you can collect most of the sunlight for energy conversion," he said.

Excitons are particle-like entities consisting of an electron and an electron hole (a positive charge attributed to the absence of an electron). They can generate a photo-voltage when they hit a semiconductor boundary or junction, and the electrons move to one side and the holes move to the other side of the junction. If excitons diffuse only tens of nanometers, only those closest to the junctions or boundaries generate photo-voltage. This accounts for the low electrical conversion efficiencies in today's organic solar cells.

"Now we lose 99 percent of the sunlight," Podzorov noted.

While the extremely pure rubrene crystals fabricated by the Rutgers physicists are suitable only for laboratory research at this time, the research shows that the exciton diffusion bottleneck is not an intrinsic limitation of organic semiconductors. Continuing development could result in more efficient and manufacturable materials.

The scientists discovered that excitons in their rubrene crystals behaved more like the excitons observed in inorganic crystals – a delocalized form known as Wannier-Mott, or WM, excitons. Scientists previously believed that only the more localized form of excitons, called Frenkel excitons, were present in organic semiconductors. WM excitons move more rapidly through crystal lattices, resulting in better opto-electronic properties.

Podzorov noted that the research also produced a new methodology of measuring excitons based on optical spectroscopy. Since excitons are not charged, they are hard to measure using conventional methods. The researchers developed a technique called polarization resolved photocurrent spectroscopy, which dissociates excitons at the crystal's surface and reveals a large photocurrent. The technique should be applicable to other materials, Podzorov claims.

Collaborating with Podzorov on the research were postdoctoral researcher Hikmat Najafov, graduate students Bumsu Lee and Qibin Zhou, and Leonard Feldman, director of the Rutgers Institute for Advanced Materials, Devices and Nanotechnology (IAMDN). Najafov and Podzorov are also affiliated with IAMDN.

Funding was provided by the National Science Foundation's Division of Materials Research and Japan's New Energy and Industrial Technology Development Organization (NEDO).

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>