Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers discovery paves way for development of efficient, inexpensive plastic solar cells

11.10.2010
Finding reported in Nature Materials journal could boost role of solar-generated electricity as alternative to fossil fuels

Physicists at Rutgers University have discovered new properties in a material that could result in efficient and inexpensive plastic solar cells for pollution-free electricity production.

The discovery, posted online and slated for publication in an upcoming issue of the journal Nature Materials, reveals that energy-carrying particles generated by packets of light can travel on the order of a thousand times farther in organic (carbon-based) semiconductors than scientists previously observed. This boosts scientists' hopes that solar cells based on this budding technology may one day overtake silicon solar cells in cost and performance, thereby increasing the practicality of solar-generated electricity as an alternate energy source to fossil fuels.

"Organic semiconductors are promising for solar cells and other uses, such as video displays, because they can be fabricated in large plastic sheets," said Vitaly Podzorov, assistant professor of Physics at Rutgers. "But their limited photo-voltaic conversion efficiency has held them back. We expect our discovery to stimulate further development and progress."

Podzorov and his colleagues observed that excitons – particles that form when semiconducting materials absorb photons, or light particles – can travel a thousand times farther in an extremely pure crystal organic semiconductor called rubrene. Until now, excitons were typically observed to travel less than 20 nanometers – billionths of a meter – in organic semiconductors.

"This is the first time we observed excitons migrating a few microns," said Podzorov, noting that they measured diffusion lengths from two to eight microns, or millionths of a meter. This is similar to exciton diffusion in inorganic solar cell materials such as silicon and gallium arsenide.

"Once the exciton diffusion distance becomes comparable to the light absorption length, you can collect most of the sunlight for energy conversion," he said.

Excitons are particle-like entities consisting of an electron and an electron hole (a positive charge attributed to the absence of an electron). They can generate a photo-voltage when they hit a semiconductor boundary or junction, and the electrons move to one side and the holes move to the other side of the junction. If excitons diffuse only tens of nanometers, only those closest to the junctions or boundaries generate photo-voltage. This accounts for the low electrical conversion efficiencies in today's organic solar cells.

"Now we lose 99 percent of the sunlight," Podzorov noted.

While the extremely pure rubrene crystals fabricated by the Rutgers physicists are suitable only for laboratory research at this time, the research shows that the exciton diffusion bottleneck is not an intrinsic limitation of organic semiconductors. Continuing development could result in more efficient and manufacturable materials.

The scientists discovered that excitons in their rubrene crystals behaved more like the excitons observed in inorganic crystals – a delocalized form known as Wannier-Mott, or WM, excitons. Scientists previously believed that only the more localized form of excitons, called Frenkel excitons, were present in organic semiconductors. WM excitons move more rapidly through crystal lattices, resulting in better opto-electronic properties.

Podzorov noted that the research also produced a new methodology of measuring excitons based on optical spectroscopy. Since excitons are not charged, they are hard to measure using conventional methods. The researchers developed a technique called polarization resolved photocurrent spectroscopy, which dissociates excitons at the crystal's surface and reveals a large photocurrent. The technique should be applicable to other materials, Podzorov claims.

Collaborating with Podzorov on the research were postdoctoral researcher Hikmat Najafov, graduate students Bumsu Lee and Qibin Zhou, and Leonard Feldman, director of the Rutgers Institute for Advanced Materials, Devices and Nanotechnology (IAMDN). Najafov and Podzorov are also affiliated with IAMDN.

Funding was provided by the National Science Foundation's Division of Materials Research and Japan's New Energy and Industrial Technology Development Organization (NEDO).

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>