Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rubber wood, coconut shells and fabrics

08.06.2012
Opening a way to a new hybrid composite, Mohd Iqbal Misnon and collaborators of UiTM Shah Alam, Malaysia tested hybrid composites made of rubberwood, coconut shell and textile fabrics (woven cotton and polyester fabrics).

Each of the hybrid composite fabricated: Cotton fabric reinforced hybrid composite (CtRHC) and Polyester fabric reinforced hybrid composite (PeHC), was reinforced with two, three and four layers cotton or polyester. The control samples were the composite without any textile fabric reinforcement.

Flexural strength, impact strength, water absorption and thickness swelling tests were conducted to determine the mechanical and physical properties of the fabricated hybrid composites respectively.

It was found that the flexural strength of these fabrics reinforced hybrid composites improved as compared to the control sample, which was without textile fabric. The result of flexural modulus of the hybrid composite fabricated demonstrated similar trend with its flexural strength. The flexural modulus of the hybrid composites improved with the presence of textile fabrics. Samples reinforced with textile fabrics exhibited higher values than the control sample. The reinforcement with 4 layers of textile fabric tended to decrease the flexural modulus slightly.

On the other hand, the composite materials have good properties if the substances are strongly bonded with each other. Nevertheless, the polyester fabric does not adhere well with rubberwood and coconut shell mixture. This makes this material system relatively not strong. The delimitation also indicated that the compression load was not effectively transferred from rubberwood and coconut mixture to the polyester fabrics. It is believed that the PeHC sample could have a better flexural strength than CtHC, if the PeHC sample performed good adhesion in their system.

Overall, the cotton and polyester hybrids recorded a higher impact energy than the control sample. The impact load had distributed effectively due to good adhesion between the cotton fabric with the rubberwood and coconut shell particles.

The samples also exhibited better impact damage tolerance. Fibre failure turned smaller as the number of fabric layers increased, indicating that a higher PeHC system can absorb the impact energy.
Again, it is believed that the polyester hybrid composite could have better impact properties if the polyester performs good surface adhesion with the rubber wood and coconut particles. Another factor that contributes to higher impact properties is the properties of polyester fabric itself. Polyester fabric is known to have good elongation between 30 – 40% and this property makes the hybrid composites more ductile and able to withstand impact.

The results of flexural and impact tests showed that the mechanical properties of this new fabricated hybrid composites were better than the control sample.

The cotton fabric reinforced hybrid composite samples had better flexural but lower impact strength in comparison with the polyester reinforced hybrid composites. All newly fabricated hybrid composites also recorded to have a lower water absorption than the control sample.

The cotton hybrid showed lower water absorption than the polyester hybrid due to poor adhesion between polyester and urea formaldehyde. Both types of hybrid composite showed higher values than the control in thickness swelling.

In short, polyester strengthened with particles of rubber wood and coconut shell is stronger than the normal ones.

Information Contacts:

Mohd Iqbal Misnon
Wan Yunus Wan Ahmad
M.I. Ab Kadir
M. Atiyyah
Department of Textile Technology

S.A. Bahari
Department of Bio-Composite Technology
UiTM Shah Alam

texiqbal@salam.uitm.edu.my

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>