Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rubber wood, coconut shells and fabrics

Opening a way to a new hybrid composite, Mohd Iqbal Misnon and collaborators of UiTM Shah Alam, Malaysia tested hybrid composites made of rubberwood, coconut shell and textile fabrics (woven cotton and polyester fabrics).

Each of the hybrid composite fabricated: Cotton fabric reinforced hybrid composite (CtRHC) and Polyester fabric reinforced hybrid composite (PeHC), was reinforced with two, three and four layers cotton or polyester. The control samples were the composite without any textile fabric reinforcement.

Flexural strength, impact strength, water absorption and thickness swelling tests were conducted to determine the mechanical and physical properties of the fabricated hybrid composites respectively.

It was found that the flexural strength of these fabrics reinforced hybrid composites improved as compared to the control sample, which was without textile fabric. The result of flexural modulus of the hybrid composite fabricated demonstrated similar trend with its flexural strength. The flexural modulus of the hybrid composites improved with the presence of textile fabrics. Samples reinforced with textile fabrics exhibited higher values than the control sample. The reinforcement with 4 layers of textile fabric tended to decrease the flexural modulus slightly.

On the other hand, the composite materials have good properties if the substances are strongly bonded with each other. Nevertheless, the polyester fabric does not adhere well with rubberwood and coconut shell mixture. This makes this material system relatively not strong. The delimitation also indicated that the compression load was not effectively transferred from rubberwood and coconut mixture to the polyester fabrics. It is believed that the PeHC sample could have a better flexural strength than CtHC, if the PeHC sample performed good adhesion in their system.

Overall, the cotton and polyester hybrids recorded a higher impact energy than the control sample. The impact load had distributed effectively due to good adhesion between the cotton fabric with the rubberwood and coconut shell particles.

The samples also exhibited better impact damage tolerance. Fibre failure turned smaller as the number of fabric layers increased, indicating that a higher PeHC system can absorb the impact energy.
Again, it is believed that the polyester hybrid composite could have better impact properties if the polyester performs good surface adhesion with the rubber wood and coconut particles. Another factor that contributes to higher impact properties is the properties of polyester fabric itself. Polyester fabric is known to have good elongation between 30 – 40% and this property makes the hybrid composites more ductile and able to withstand impact.

The results of flexural and impact tests showed that the mechanical properties of this new fabricated hybrid composites were better than the control sample.

The cotton fabric reinforced hybrid composite samples had better flexural but lower impact strength in comparison with the polyester reinforced hybrid composites. All newly fabricated hybrid composites also recorded to have a lower water absorption than the control sample.

The cotton hybrid showed lower water absorption than the polyester hybrid due to poor adhesion between polyester and urea formaldehyde. Both types of hybrid composite showed higher values than the control in thickness swelling.

In short, polyester strengthened with particles of rubber wood and coconut shell is stronger than the normal ones.

Information Contacts:

Mohd Iqbal Misnon
Wan Yunus Wan Ahmad
M.I. Ab Kadir
M. Atiyyah
Department of Textile Technology

S.A. Bahari
Department of Bio-Composite Technology
UiTM Shah Alam

Megawati Omar | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>