Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Many Roads lead to Superconductivity

HZB-Scientists discovered a unique feature of Superconductivity

Since their discovery in 2008, a new class of superconductors has precipitated a flood of research the world over. Unlike the previously familiar copper ceramics (cuprates), the basic structure of this new class consists of iron compounds. Because the structure of these compounds differs from the cuprates in many fundamental ways, there is hope of gaining new insights into how the phenomenon of superconductivity arises.

In cooperation with an international research group, researchers from Helmholtz-Zentrum Berlin (HZB) have now discovered a magnetic signature that occurs universally among all iron-based superconductors, even if the parent compounds from which the superconductors are made possess different chemical properties. Their findings are published in Nature Materials (DOI: 10.1038/NMAT280).

Superconductors are generally produced by “doping” so-called parent compounds, which means introducing foreign atoms into them. There is a strong correlation between magnetism and superconductivity here – both being properties of solids. Conventional superconductors, such as those used in MRI machines in hospitals, do not like magnetism because it disturbs the interactions that lead to superconductivity within the crystal.

It is quite a different story for the celebrated high-temperature superconductors, such as cuprates and iron-arsenic compounds. In these cases, the magnetic forces actually help, even promote the onset of superconductivity. These compounds feature magnetic orders which, if they occur in a crystalline structure, are a telltale sign that the material is suitable to be a high-temperature superconductor.

With the new iron-based superconductors, it turns out that the symmetry of a magnetic order corresponds exactly to the symmetry in the superconductivity signal.

Dimitri Argyriou (HZB) and his colleagues have produced iron-tellurium-selenium crystals and determined their chemical composition using X-ray and neutron diffraction. They measured the magnetic signals in the crystals by performing neutron scattering experiments on the research reactor BER II of HZB and on the research reactor of the Institute Laue-Langevin in Grenoble.

They discovered that the symmetry of the magnetic order is significantly different from that of other iron-based parent compounds, such as iron-arsenic compounds. Yet, surprisingly, this difference has no impact on the development of superconductivity as a property. It has been detected that the magnetic signal caused by superconductivity - often referred to as the magnetic resonance - has the same symmetry as that of the magnetic order. And this is the same in all iron compounds, and apparently follows a universal mechanism that causes superconductivity for all of these materials.

Dimitri Argyriou describes this property as follows: “Going by what we know about the magnetic order of iron compounds, the iron-tellurium-selenium materials ought not to exhibit any superconductivity. But the opposite is the case: Despite the differences in magnetism, the signature of their superconductivity is the same. If we were now to understand how superconductivity arises in light of different starting conditions, then we could perhaps develop materials that are superconductive at even higher temperatures.”

Dr. Ina Helms | Helmholtz-Zentrum
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>