Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rigid growth matrix: a key to success of cardiac tissue engineering

16.04.2013
A new study by researchers at UCLA suggests that the elasticity of the physical matrix used for growing heart muscle cells outside of the body may be critical to the success of cardiac tissue engineering. The results were published in the journal Science and Technology of Advanced Materials this week.

Adult heart muscle is the least regenerative of human tissues. But embryonic cardiomyocytes (cardiac muscle cells) can multiply, with embryonic stem cells providing an endless reservoir for new cardiac tissue.

A new study by Nakano, Gimzewski and their co-workers at the University of California, Los Angeles (UCLA) suggests that the elasticity of the physical matrix used for growing cardiomyocytes outside of the body may be critical to the success of cardiac tissue engineering efforts.

Published in the journal Science and Technology of Advanced Materials Vol. 14, p. 025003 (http://iopscience.iop.org/1468-6996/14/2/025003), the study found that a stiff or rigid environment not only enhances the function of existing cardiomyocytes (as has previously been shown), but also promotes the generation of cardiomyocytes from embryonic stem (ES) cells. It may therefor be possible to grow new heart muscle tissue from stem cells by manipulating the stiffness of the medium they're grown in.

In living organisms, a type of adult stem cells called mesenchymal stem cells (MSCs) are extremely sensitive to the elasticity of different materials, when cultured outside the body. For example, soft growing matrices that mimic brain tissue promote the differentiation of MSCs into neurons, while rigid matrices that resemble bone tissue promote the differentiation of MSCs into bone cells.

In this study, the UCLA team examined the role of matrix elasticity on cardiac muscle development using mouse and human embryonic stem cells, which were grown on different substrates of a silicon-based organic polymer that varied in stiffness. The team found that rigid matrices promoted the generation of more cardiomyocytes cells from ES cells. In addition, ES-derived cardiomyocytes displayed functional maturity and synchronization of beating when cultured with cardiomyocytes harvested from a developing embryo.

The team recommends further research on how biophysical cues determine the fate of embryonic stem cells in order to improve cardiac tissue culture methods for regenerative medicine purposes.

For more information about this study, please contact:

Atsushi Nakano
Department of Molecular, Cell and Developmental Biology
Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research
Jonsson Comprehensive Cancer Center
Molecular Biology Institute
University of California Los Angeles
Email: anakano@ucla.edu
Journal information
[1] Armin Arshi, Yasuhiro Nakashima, Haruko Nakano, Sarayoot Eaimkhong, Denis Evseenko, Jason Reed, Adam Z Stieg, James K Gimzewski and Atsushi Nakano, “Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells”, Science and Technology of Advanced Materials 14 (2013) 025003, doi:10.1088/1468-6996/14/2/025003.

Mikiko Tanifuji | Research asia research news
Further information:
http://iopscience.iop.org/1468-6996/14/2/025003
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>