Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rigid growth matrix: a key to success of cardiac tissue engineering

A new study by researchers at UCLA suggests that the elasticity of the physical matrix used for growing heart muscle cells outside of the body may be critical to the success of cardiac tissue engineering. The results were published in the journal Science and Technology of Advanced Materials this week.

Adult heart muscle is the least regenerative of human tissues. But embryonic cardiomyocytes (cardiac muscle cells) can multiply, with embryonic stem cells providing an endless reservoir for new cardiac tissue.

A new study by Nakano, Gimzewski and their co-workers at the University of California, Los Angeles (UCLA) suggests that the elasticity of the physical matrix used for growing cardiomyocytes outside of the body may be critical to the success of cardiac tissue engineering efforts.

Published in the journal Science and Technology of Advanced Materials Vol. 14, p. 025003 (, the study found that a stiff or rigid environment not only enhances the function of existing cardiomyocytes (as has previously been shown), but also promotes the generation of cardiomyocytes from embryonic stem (ES) cells. It may therefor be possible to grow new heart muscle tissue from stem cells by manipulating the stiffness of the medium they're grown in.

In living organisms, a type of adult stem cells called mesenchymal stem cells (MSCs) are extremely sensitive to the elasticity of different materials, when cultured outside the body. For example, soft growing matrices that mimic brain tissue promote the differentiation of MSCs into neurons, while rigid matrices that resemble bone tissue promote the differentiation of MSCs into bone cells.

In this study, the UCLA team examined the role of matrix elasticity on cardiac muscle development using mouse and human embryonic stem cells, which were grown on different substrates of a silicon-based organic polymer that varied in stiffness. The team found that rigid matrices promoted the generation of more cardiomyocytes cells from ES cells. In addition, ES-derived cardiomyocytes displayed functional maturity and synchronization of beating when cultured with cardiomyocytes harvested from a developing embryo.

The team recommends further research on how biophysical cues determine the fate of embryonic stem cells in order to improve cardiac tissue culture methods for regenerative medicine purposes.

For more information about this study, please contact:

Atsushi Nakano
Department of Molecular, Cell and Developmental Biology
Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research
Jonsson Comprehensive Cancer Center
Molecular Biology Institute
University of California Los Angeles
Journal information
[1] Armin Arshi, Yasuhiro Nakashima, Haruko Nakano, Sarayoot Eaimkhong, Denis Evseenko, Jason Reed, Adam Z Stieg, James K Gimzewski and Atsushi Nakano, “Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells”, Science and Technology of Advanced Materials 14 (2013) 025003, doi:10.1088/1468-6996/14/2/025003.

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>