Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary 'metamaterial' has potential to reshape neurosurgery

28.04.2014

Graphene has possible uses in brain cancer treatment, neuroregeneration, functional neurosurgery, and more

The development of graphene—a highly advanced metamaterial with many unique and varied properties—may lead to exciting new applications in the diagnosis and treatment of neurological diseases, according to a report in the May issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

Tobias A. Mattei, MD, of Invision Health/Brain & Spine Center – Buffalo, New York and Azeem A. Rehman, BS, of The University of Illinois College of Medicine at Peoria present a "primer" on the development of graphene-based metamaterials that may lead to new advances in several areas of neurosurgery. Mattei and Rehman write, "As a surgical specialty that heavily relies on technological innovations, it is expected that neurosurgery will significantly benefit from several graphene-based technological developments in the next decades."

Graphene Has 'Extremely Remarkable' Properties …

An artificially engineered "metamaterial"—with properties not typically found in nature—graphene is composed of a single layer of carbon atoms in a "honeycomb lattice" pattern. The developers of graphene were awarded the Nobel Prize in Physics in 2010; massive resources are being invested in its further research and development.

Graphene has a number of "extremely remarkable" properties that make it unlike any other material. It combines the greatest mechanical strength ever measured in any material— natural or artificial—with very light weight and high elasticity. Graphene also has unique optical and photothermal properties which, among other things, allow it to release energy in the form of heat in response to light input.

In addition, graphene has very high electrical conductivity, as well as a high surface area allowing "efficient bioconjugation" with common biomolecules. A few years ago, graphene was one of the most expensive materials on Earth. However, as industrial production increases, it is dropping rapidly in price.

Graphene is being developed for use in a wide range of technologies, such as flexible liquid crystal displays and electronic devices, new types of integrated electric circuits, and lithium-ion microbatteries—to name just a few. It also has great promise for use in various types of biomedical devices, several of which are relevant to conditions treated by neurosurgeons.

…With Many Promising Applications in Neurosurgery

Mattei and Rehman discuss some of the frontline scientific research being done to explore the capabilities and potential uses of graphene. As development continues, graphene-based metamaterials could contribute to advances in several areas of neurosurgery, including:

  • Cancer Treatment. Graphene nanoparticles may play a role in tumor-targeted imaging, as well as possible new therapeutic approaches involving photothermal or alternating electrical field stimulation therapies.

     

  • Intensive Care Unit Monitoring. New electrochemical and optical biosensors may provide new approaches to neurologic monitoring in patients with stroke or traumatic brain injury.

     

  • Neuroregeneration. Graphene materials may be used in new strategies to promote regeneration of nervous system tissues—for example, graphene-coated scaffolds to stimulate growth of injured peripheral nerves.

     

  • Functional Neurosurgery. Improved electrophysiological monitoring systems may help in performing precisely targeted brain surgeries in patients with conditions such as epilepsy and movement disorders.

     

  • Spinal Surgery. High-resistance graphene-based hardware may represent the next generation in instrumentation for spinal surgery.

     

However, much work remains before any of these advances become reality. While graphene has been shown to be biocompatible, more basic research is needed to examine the long-term biological effects of graphene implants and to answer other important clinical questions. Mattei and Rehman conclude, "Increased awareness of the ongoing frontline research on graphene may enable the neurosurgical community to properly take advantage of the technological applications such a new metamaterial may offer to experimental and clinical neurosurgery in the near future."

###

About Neurosurgery

Neurosurgery, the Official Journal of the Congress of Neurological Surgeons, is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

About Wolters Kluwer Health

Wolters Kluwer Health is a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Serving more than 150 countries and territories worldwide, Wolters Kluwer Health's customers include professionals, institutions and students in medicine, nursing, allied health and pharmacy. Major brands include Health Language®, Lexicomp®, Lippincott Williams & Wilkins, Medicom®, Medknow, Pharmacy OneSource®, ProVation® Medical and UpToDate®.

Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company. Wolters Kluwer had 2012 annual revenues of €3.6 billion ($4.6 billion), employs approximately 19,000 people worldwide, and maintains operations in over 40 countries across Europe, North America, Asia Pacific, and Latin America. Follow our official Twitter handle: @WKHealth.

Connie Hughes | Eurek Alert!

More articles from Materials Sciences:

nachricht New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials
26.07.2016 | DOE/Oak Ridge National Laboratory

nachricht Self-assembling nano inks form conductive and transparent grids during imprint
26.07.2016 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>