Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking the Basic Science of Graphene Synthesis

08.09.2014

A new route to making graphene has been discovered that could make the 21st century’s wonder material easier to ramp up to industrial scale. Graphene – a tightly bound single layer of carbon atoms with super strength and the ability to conduct heat and electricity better than any other known material – has potential industrial uses that include flexible electronic displays, high-speed computing, stronger wind turbine blades, and more efficient solar cells, to name just a few under development.

In the decade since Nobel laureates Konstantin Novoselov and Andre Geim proved the remarkable electronic and mechanical properties of graphene, researchers have been hard at work to develop methods of producing pristine samples of the material on a scale with industrial potential. Now, a team of Penn State scientists has discovered a route to making single layer graphene that has been overlooked for more than 150 years.


Mallouk Lab, Penn State

Intercalation of graphite using Brønsted acids produces pristine single layer graphene.

“There are lots of layered materials similar to graphene with interesting properties, but until now we didn’t know how to chemically pull the solids apart to make single sheets without damaging the layers,” said Thomas E. Mallouk, Evan Pugh Professor of Chemistry, Physics, and Biochemistry and Molecular Biology at Penn State.

In a paper first published online Sept. 9 in the journal Nature Chemistry, Mallouk and colleagues at Penn State and the Research Center for Exotic Nanocarbons at Shinshu University, Japan, describe a method called intercalation, in which guest molecules or ions are inserted between the carbon layers of graphite to pull the single sheets apart.

The intercalation of graphite was achieved in 1841, but always with a strong oxidizing or reducing agent that damaged the desirable properties of the material. One of the mostly widely used methods to intercalate graphite by oxidation was developed in 1999 by Nina Kovtyukhova, a research associate in Mallouk’s lab.

While studying other layered materials, Mallouk asked Kovtyukhova to use her method, which requires a strong oxidizing agent and a mixture of acids, to open up single layers of solid boron nitride, a compound with a structure similar to graphene. To their surprise, she was able to get all of the layers to open up. In subsequent control experiments, Kovtyukhova tried leaving out various agents and found that the oxidizing agent wasn’t necessary for the reaction to take place.

Mallouk asked her to try a similar experiment without the oxidizing agent on graphite, but aware of the extensive literature saying that the oxidizing agent was required, Kovtyukhova balked.

“I kept asking her to try it and she kept saying no,” Mallouk said. “Finally, we made a bet, and to make it interesting I gave her odds. If the reaction didn’t work I would owe her $100, and if it did she would owe me $10. I have the ten dollar bill on my wall with a nice Post-it note from Nina complimenting my chemical intuition.”

Mallouk believes the results of this new understanding of intercalation in boron nitride and graphene could apply to many other layered materials of interest to researchers in the Penn State Center for Two-Dimensional and Layered Materials who are investigating what are referred to as “Materials Beyond Graphene.” The next step for Mallouk and colleagues will be to figure out how to speed the reaction up in order to scale up production.

Their results appear in the Nature Chemistry article titled “Non-oxidative intercalation and exfoliation of graphite by Brønsted acids” (http://dx.doi.org/10.1038/nchem.2054) by Nina I. Kovtyukhova, Yuanxi Wang, Ayse Berkdemir, Mauricio Terrones, Vincent H. Crespi and Thomas E. Mallouk, all of Penn State, and Rodolfo Cruz-Silva of the Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan. Their work was supported by the U.S. Army Research Office MURI grant W911NF-11-1-0362. Contact Prof. Mallouk at tom@chem.psu.edu.

About the Center for Two Dimensional and Layered Materials at Penn State

The 2DLM Center conducts multidisciplinary research in the fast emerging field of atomically thin layered materials. Based in Penn State’s Materials Research Institute, the Center works with industry partners, national labs, and academic collaborators to discover and predict new properties that arise when novel materials are created one atomic layer at a time. Visit the website at http://www.mri.psu.edu/centers/2dlm

Contact Information

Walter Mills
Associate Editor Publications
wem12@psu.edu
Phone: 814-865-0285

Walter Mills | newswise

Further reports about: Rethinking acids discovered graphene graphite intercalation materials oxidizing properties reaction

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>