Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking Brownian motion with the 'Emperor's New Clothes'

28.07.2009
In the classic fairy tale, "The Emperor's New Clothes," Hans Christian Andersen uses the eyes of a child to challenge conventional wisdom and help others to see more clearly.

In similar fashion, researchers at the University of Illinois have now revealed the naked truth about a classic bell-shaped curve used to describe the motion of a liquid as it diffuses through another material.

"The new findings raise fundamental questions concerning the statistical nature of the diffusion process," says Steve Granick, Founder Professor of Engineering, and professor of materials science and engineering, of chemistry, of chemical and biomolecular engineering, and of physics at the U. of I.

Diffusion is critical to processes such as drug delivery, water purification, and the normal operation of living cells. Key to the diffusion process is the manner in which the motion of one molecule affects the motion of another.

"In high school science classes, students are often assigned the task of using a microscope to watch a particle of dust sitting in a drop of water," Granick said. "The dust particle seems alive, moving back and forth, never in the same way. The motion of the dust particle is caused by the random 'kicks' of surrounding water molecules."

Called "Brownian motion" (after botanist Robert Brown, who noticed it in 1828), this phenomenon of fluids was described by Albert Einstein in 1905, when he published his statistical molecular theory of liquids.

According to Einstein, if the motions of many particles were watched, and the distance each moved in a certain time were recorded, the distribution would resemble the familiar Gaussian, bell-shaped curve used to assign grades in a science class.

Einstein had it right – almost.

"Like Einstein, we used to think we could describe Brownian motion with a standard bell-shaped curve," Granick said. "But now, with the ability to measure very small distances much more precisely than was possible 100 years ago, we have found that we can have extremes much farther than previously imagined."

In a paper to be published in the Proceedings of the National Academy of Sciences Online Early Edition next week, the U. of I. researchers show that Einstein's explanation, commonly cited in textbooks, fails in certain important cases.

The experiments were conducted by precisely tracking the motion of 100-nanometer colloidal beads using fluorescence microscopy.

In one series of experiments, the researchers watched as the beads moved up and down tiny tubes of lipid molecules by Brownian motion. In a second series of experiments, the researchers watched as the beads diffused through a porous membrane of entangled macromolecule filaments, again by Brownian motion.

In both sets of experiments, there were many features in full agreement with Einstein and the bell-shaped curve; but there were also features in significant disagreement. In those cases, the beads moved much farther than the common curve could predict. In those extreme displacements, diffusion behavior was not Gaussian, the researchers report. The behavior was exponential.

"These large displacements happen less often, but when they do occur, they are much bigger than we previously thought possible," Granick said.

The new findings "change the rules of the diffusion game," Granick said. "Like the emperor's new clothes, now that we know the bell-shaped curve isn't always the right way to think about a particular problem, process, or operation, we can begin to design around it, and maybe take advantage of it. And, we can correct the textbooks."

Granick is affiliated with the university's Beckman Institute, the department of bioengineering, and the Frederick Seitz Materials Research Laboratory.

With Granick, co-authors of the paper are graduate research assistant and lead author Bo Wang, graduate research assistant Stephen M. Anthony and research scientist Sung Chul Bae.

The U.S. Department of Energy funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>