Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel the secret to making cheap, high-density data storage

11.10.2012
Imagine being able to store thousands of songs and high-resolution images on data devices no bigger than a fingernail. Researchers from A*STAR’s Institute of Materials Research and Engineering (IMRE) and the National University of Singapore (NUS) have discovered that an ultra-smooth surface is the key factor for “self-assembly”

Self-assembly is a a cheap, high-volume, high-density patterning technique. It allows manufacturers to use the method on a variety of different surfaces. This discovery paves the way for the development of next generation data storage devices, with capacities of up to 10 Terabits/in2 which could lead to significantly greater storage on much smaller data devices.

The “self-assembly” technique is one of the simplest and cheapest high-volume methods for creating uniform, densely-packed nanostructures that could potentially help store data. Self-assembly is one of the leading candidates for large scale nanofabrication at very high pattern densities. One of its most obvious applications will be in the field of bit patterned media, or the hard disk industry . It is widely used in research and is gaining acceptance in industry as a practical lithographic tool for sub-100 nm, low-cost, large area patterning. However, attempts to employ self-assembly on different surface types, such as magnetic media used for data storage, have shown varying and erratic results to date. This phenomenon has continued to puzzle industry researchers and scientists globally.

Researchers from A*STAR’s IMRE and NUS have now solved this mystery and identified that the smoother the surface, the more efficient the self-assembly of nanostructures will be. This breakthrough allows the method to be used on more surfaces and reduce the number of defects in an industrial setting. The more densely packed the structures are in a given area, the higher the amount of data that can be stored.

“A height close to 10 atoms, or 10 angstroms in technical terms, is all it takes to make or break self-assembly,” explained Dr MSM Saifullah, one of the key researchers from A*STAR’s IMRE who made the discovery. This is based on a root mean squared surface roughness of 5 angstrom. The team discovered that this was the limit of surface roughness allowed for the successful self-assembly of dots, which could eventually be used in making high-density data storage. “If we want large scale, large area nanopatterning using very affordable self-assembly, the surface needs to be extremely smooth so that we can achieve efficient, successful self-assembly and with lower incidences of defects.”

The discovery was recently published in Scientific Reports, an open access journal from Nature. This research is supported by the National Research Foundation Singapore under its “Frontier in magnetic recording research: Vision for 10 terabits per square inch” programme (NRF-CRP 002-097 NRF-08) and administered by A*STAR’s IMRE.

For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:

Dr MSM Saifullah
Scientist III
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 1484
E-mail saifullahm@imre.a-star.edu.sg

About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.
About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>