Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Track Ripples in Freestanding Graphene for First Time

30.04.2014

Clear images advance understanding of fluctuations in 2-D materials

An international team of scientists, led by physicists at the University of Arkansas, has tracked the dynamic movement of ripples in freestanding graphene at the atomic level.


Russell Cothren

Paul Thibado, University of Arkansas

This discovery advances the fundamental understanding of one of the strongest, lightest and most conductive materials, said Paul Thibado, University of Arkansas professor of physics.
“Physicists have known that the ripples must be there and some experiments did find them,” he said. “But they could only measure the ripples as static in time. The theory requires that they fluctuate, more like looking at an ocean with waves. The thermal energy needs to vibrate. Up until our experiment no one had successfully measured this dynamic property of the ripples.”

The team published its findings on Monday, April 28, in Nature Communications, an online journal published by the journal Nature, in a paper titled “Unusual ultra-low frequency fluctuations in freestanding graphene.”

Freestanding graphene could emerge as a replacement for silicon and other materials in microprocessors and next-generation energy devices, but much remains unknown about its mechanical and thermal properties.

Graphene, discovered in 2004, is a one-atom-thick sheet of graphite. Electrons moving through graphite have mass and encounter resistance, but electrons moving through graphene are massless and therefore encounter much less resistance. This makes graphene an excellent candidate material for future energy needs, as well as for use in quantum computers, to enable enormous calculations with little energy use.

The study was led by Peng Xu, a postdoctoral research associate in the department of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas.

Xu and Thibado used scanning tunneling microscopy, which produces images of individual atoms on a surface, to measure ultra-low frequency fluctuations in a one-square-angstrom region of freestanding graphene. An angstrom is a unit of length equivalent to one hundred millionth of a centimeter.

These fluctuations, known as intrinsic ripples, have been exceedingly difficult to study because their vertical movement usually creates blurry images, Thibado said. The University of Arkansas researchers successfully produced clear images, enabling them to present a model from elasticity theory to explain the very-low frequency oscillations. In physics, elasticity is the tendency of solid materials to return to their original shape after being deformed.

The researchers’ innovative scanning tunneling microscopy technique provides a much-needed atomic- scale probe for the time-dependent behaviors of intrinsic ripples, said Thibado, an expert in experimental condensed matter physics. The ripple dynamics are important for understanding mechanical stability and the efficient thermal conductivity transport properties of graphene.

In the last decade, theoretical physicists predicted a bending mode in two-dimensional material graphene that couples to a stretching mode of the graphene. Without that bending and coupling, freestanding graphene wouldn’t exist, Thibado said.

This study, funded by the Office of Naval Research and the National Science Foundation, was conducted primarily through a research partnership between the University of Arkansas and the University of Antwerp in Belgium.

The results were obtained through a collaborative effort with University of Arkansas physics graduate students Steven D. Barber, James Kevin Schoelz and Matthew L. Ackerman; Mehdi Neek-Amal of the University of Antwerp and Shahid Rajaee Teacher Training University in Iran, Ali Sadeghi of the University of Basel in Switzerland and Francois Peeters of the University of Antwerp.

CONTACT:
Paul Thibado, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-7932, thibado@uark.edu

Chris Branam | newswise

Further reports about: Arts elasticity fluctuations graphene graphite materials measure physics properties

More articles from Materials Sciences:

nachricht Strength and ductility for alloys
27.05.2016 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Computational high-throughput screening finds hard magnets containing less rare earth elements
25.05.2016 | Fraunhofer-Institut für Werkstoffmechanik IWM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>