Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Track Ripples in Freestanding Graphene for First Time

30.04.2014

Clear images advance understanding of fluctuations in 2-D materials

An international team of scientists, led by physicists at the University of Arkansas, has tracked the dynamic movement of ripples in freestanding graphene at the atomic level.


Russell Cothren

Paul Thibado, University of Arkansas

This discovery advances the fundamental understanding of one of the strongest, lightest and most conductive materials, said Paul Thibado, University of Arkansas professor of physics.
“Physicists have known that the ripples must be there and some experiments did find them,” he said. “But they could only measure the ripples as static in time. The theory requires that they fluctuate, more like looking at an ocean with waves. The thermal energy needs to vibrate. Up until our experiment no one had successfully measured this dynamic property of the ripples.”

The team published its findings on Monday, April 28, in Nature Communications, an online journal published by the journal Nature, in a paper titled “Unusual ultra-low frequency fluctuations in freestanding graphene.”

Freestanding graphene could emerge as a replacement for silicon and other materials in microprocessors and next-generation energy devices, but much remains unknown about its mechanical and thermal properties.

Graphene, discovered in 2004, is a one-atom-thick sheet of graphite. Electrons moving through graphite have mass and encounter resistance, but electrons moving through graphene are massless and therefore encounter much less resistance. This makes graphene an excellent candidate material for future energy needs, as well as for use in quantum computers, to enable enormous calculations with little energy use.

The study was led by Peng Xu, a postdoctoral research associate in the department of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas.

Xu and Thibado used scanning tunneling microscopy, which produces images of individual atoms on a surface, to measure ultra-low frequency fluctuations in a one-square-angstrom region of freestanding graphene. An angstrom is a unit of length equivalent to one hundred millionth of a centimeter.

These fluctuations, known as intrinsic ripples, have been exceedingly difficult to study because their vertical movement usually creates blurry images, Thibado said. The University of Arkansas researchers successfully produced clear images, enabling them to present a model from elasticity theory to explain the very-low frequency oscillations. In physics, elasticity is the tendency of solid materials to return to their original shape after being deformed.

The researchers’ innovative scanning tunneling microscopy technique provides a much-needed atomic- scale probe for the time-dependent behaviors of intrinsic ripples, said Thibado, an expert in experimental condensed matter physics. The ripple dynamics are important for understanding mechanical stability and the efficient thermal conductivity transport properties of graphene.

In the last decade, theoretical physicists predicted a bending mode in two-dimensional material graphene that couples to a stretching mode of the graphene. Without that bending and coupling, freestanding graphene wouldn’t exist, Thibado said.

This study, funded by the Office of Naval Research and the National Science Foundation, was conducted primarily through a research partnership between the University of Arkansas and the University of Antwerp in Belgium.

The results were obtained through a collaborative effort with University of Arkansas physics graduate students Steven D. Barber, James Kevin Schoelz and Matthew L. Ackerman; Mehdi Neek-Amal of the University of Antwerp and Shahid Rajaee Teacher Training University in Iran, Ali Sadeghi of the University of Basel in Switzerland and Francois Peeters of the University of Antwerp.

CONTACT:
Paul Thibado, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-7932, thibado@uark.edu

Chris Branam | newswise

Further reports about: Arts elasticity fluctuations graphene graphite materials measure physics properties

More articles from Materials Sciences:

nachricht Ultrasonic Fingerprint Sensor May Take Smartphone Security to New Level
01.07.2015 | American Institute of Physics (AIP)

nachricht Physical study may give boost to hydrogen cars
01.07.2015 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>