Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Ways to Make Stronger Materials in 3-D

19.09.2013
Aided by funding from NASA and using methods similar to 3-D printing, researchers at Missouri University of Science and Technology are running computer simulations of processes that could lead to stronger, more durable materials for the space agency.

The Missouri S&T researchers also plan to fabricate some of these new materials soon, says Dr. Frank Liou, director of the university’s Laser Aided Manufacturing Process (LAMP) Laboratory and the Michael and Joyce Bytnar Professor of Product Innovation and Creativity.


Missouri S&T photo

Dr. Frank Liou observes the metal deposition process in the Laser Aided Manufacturing Process (LAMP) Laboratory at Missouri University of Science and Technology.

For the past 15 years, Liou and his colleagues have been developing a fabrication method known as additive manufacturing. The process involves the use of high-powered lasers to melt small particles of powdered materials as they exit a nozzle to create three-dimensional shapes, layer by layer. The technique is similar to 3-D printing, which has grown in popularity in recent years.

According to Liou, the additive approach applies to a broad range of manufacturing – from the fabrication of large aircraft components to minuscule biomaterials used in surgical procedures. Some of Liou’s students who enjoy fishing even joke about using LAMP’s additive manufacturing tools to make a canoe, layer by layer.

Additive manufacturing approaches result in a denser, stronger material than conventional methods, such as milling, machining or forging of metals. Liou, who also directs Missouri S&T’s manufacturing engineering program, says steel parts made using the additive method are 10 percent stronger than steel that is machined.

In his latest research, Liou is combining additive manufacturing with more conventional approaches to creating materials. He calls the approach “hybrid manufacturing.”

With hybrid manufacturing, S&T researchers could apply an additive manufacturing technique to create aircraft components from two different metals – perhaps steel and copper – and then smooth the parts’ rough edges using automated computer-numerical control machining.

Liou has received about $660,000 from NASA to develop computer models of various additive manufacturing approaches. He believes the models will lead to a greater understanding of how layered materials adhere, or bond, to the surface on which they are deposited.

“In many aerospace or biomedical applications, you cannot afford metal fatigue,” or cracking of the material, Liou says. “It is important to understand how well a deposited metal bonds to the surface.”

Liou recently received another $750,000 from NASA to support the next step of this research: the fabrication of new materials not generally observed in nature. The research could lead to stronger metals as well as a way to repair expensive components instead of scrapping them, Liou says.

“Some dies or molds could cost a quarter of a million dollars to replace,” Liou says.

Andrew Careaga | Newswise
Further information:
http://www.mst.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>