Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Ways to Make Stronger Materials in 3-D

19.09.2013
Aided by funding from NASA and using methods similar to 3-D printing, researchers at Missouri University of Science and Technology are running computer simulations of processes that could lead to stronger, more durable materials for the space agency.

The Missouri S&T researchers also plan to fabricate some of these new materials soon, says Dr. Frank Liou, director of the university’s Laser Aided Manufacturing Process (LAMP) Laboratory and the Michael and Joyce Bytnar Professor of Product Innovation and Creativity.


Missouri S&T photo

Dr. Frank Liou observes the metal deposition process in the Laser Aided Manufacturing Process (LAMP) Laboratory at Missouri University of Science and Technology.

For the past 15 years, Liou and his colleagues have been developing a fabrication method known as additive manufacturing. The process involves the use of high-powered lasers to melt small particles of powdered materials as they exit a nozzle to create three-dimensional shapes, layer by layer. The technique is similar to 3-D printing, which has grown in popularity in recent years.

According to Liou, the additive approach applies to a broad range of manufacturing – from the fabrication of large aircraft components to minuscule biomaterials used in surgical procedures. Some of Liou’s students who enjoy fishing even joke about using LAMP’s additive manufacturing tools to make a canoe, layer by layer.

Additive manufacturing approaches result in a denser, stronger material than conventional methods, such as milling, machining or forging of metals. Liou, who also directs Missouri S&T’s manufacturing engineering program, says steel parts made using the additive method are 10 percent stronger than steel that is machined.

In his latest research, Liou is combining additive manufacturing with more conventional approaches to creating materials. He calls the approach “hybrid manufacturing.”

With hybrid manufacturing, S&T researchers could apply an additive manufacturing technique to create aircraft components from two different metals – perhaps steel and copper – and then smooth the parts’ rough edges using automated computer-numerical control machining.

Liou has received about $660,000 from NASA to develop computer models of various additive manufacturing approaches. He believes the models will lead to a greater understanding of how layered materials adhere, or bond, to the surface on which they are deposited.

“In many aerospace or biomedical applications, you cannot afford metal fatigue,” or cracking of the material, Liou says. “It is important to understand how well a deposited metal bonds to the surface.”

Liou recently received another $750,000 from NASA to support the next step of this research: the fabrication of new materials not generally observed in nature. The research could lead to stronger metals as well as a way to repair expensive components instead of scrapping them, Liou says.

“Some dies or molds could cost a quarter of a million dollars to replace,” Liou says.

Andrew Careaga | Newswise
Further information:
http://www.mst.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>