Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Stony Brook University Predict Material 'Denser than Diamond'

09.06.2011
New forms of carbon break the record of density and predicted to possess tunable electronic properties

Stony Brook University graduate student Qiang Zhu, together with Professor of Geosciences and Physics, Artem R. Oganov, postdoc Andriy O. Lyakhov and their colleagues from the University de Oviedo in Spain, have predicted three new forms of carbon, the findings of which were published in a paper entitled “Denser than diamond: Ab initio search for superdense carbon allotropes,” in the June 7, 2011 online edition of Physical Review B. So far, each new found modification of carbon resulted in a scientific, technological revolution – the same could happen now, if scientists can find a way to synthesize these new forms of carbon.

Elemental carbon possesses a unique range of structures and properties – from ultrsoft graphite to superhard diamond, and also including elusive carbines, beautifully symmetric fullerenes, carbon nanotubes, and the recently established new form, M-carbon (the structure of which was predicted by Oganov in 2006). Properties of all these modifications of carbon are so interesting and so tunable that two Nobel prizes were awarded recently for their studies (the 1996 Chemistry and 2010 Physics awards).

Graphene is the densest two-dimensional material, with unique mechanical and electronic properties and having some electrons moving with near-light velocities and behaving as if they had zero mass. Diamond has set several records – it is not only the hardest known material, but also has denser packing of atoms than any other known three-dimensional material. When doped by boron, diamond displays superconductivity and is the only know materials simultaneously displaying superhardness and superconductivity.

Now Zhu, Oganov, and their colleagues propose three new structures of carbon, which should be more than 3% denser than diamond. Greater density means that electrons should have a higher kinetic energy (that is, move faster). Calculations of Zhu et al. show that the new modifications are almost as hard as diamond, but do not exceed its hardness. Their electronic properties are very diverse, with the band gap ranging from 3.0 eV to 7.3 eV. Band gap is the minimum separation in energy between occupied and unoccupied electronic orbitals and is the most important characteristic of the electronic structure of materials. Such a wide range of band gaps implies the possibility of tuning the electronic properties. The band gap of 7.3 eV predicted for the tP12 modification is the largest value for all forms of carbon.

Other interesting properties include ultralow compressibility – when subjected to pressure, the new forms of carbon will contract less than most materials (even slightly less than diamond, the current record holder). They have higher refractive indices and stronger light dispersion than diamond – which means better brilliance and color effects than those displayed by diamond. “Carbon is an inexhaustible element in its chemical diversity and in the multitude of its physical applications”, says Professor Oganov. “If these predicted forms of carbon can be synthesized, they may find important technological roles”. Researchers believe that the new forms of carbon, thanks to their high densities, could be synthesized by shock compression of low-density modifications, or by directed growth on substrate.

Figure caption: Crystal structure of one of the superdense forms of carbon predicted by Zhu et al.

Reference:
Zhu Q., Oganov A.R., Salvado M., Pertierra P., Lyakhov A.O. (2011). Denser than diamond:ab initio search for superdense carbon allotropes. Phys. Rev. B 83, 193410.

| Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>