Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers present new multifunctional topological insulator material w/ combined superconductivity

25.09.2013
Most materials show one function, for example, a material can be a metal, a semiconductor, or an insulator. Metals such as copper are used as conducting wires with only low resistance and energy loss.

Superconductors are metals which can conduct current even without any resistance, although only far below room temperature. Semiconductors, the foundation of current computer technology, show only low conduction of current, while insulators show no conductivity at all.

Physicists have recently been excited about a new exotic type of materials, so-called topological insulators. A topological insulator is insulating inside the bulk like a normal insulator, while on the surface it shows conductivity like a metal. When a topological insulator is interfaced with a superconductor, a mysterious particle called Majorana fermion emerges, which can be used to fabricate a quantum computer that can run much more quickly than any current computer. Searching for Majorana fermions based on a topological insulator–superconductor interface has thus become a hot race just very recently.

Computer-based materials design has demonstrated its power in scientific research, saving resources and also accelerating the search for new materials for specific purposes. By employing state-of-art materials design methods, Dr. Binghai Yan and his collaborators from the Max Planck Institute for Chemical Physics of Solids and Johannes Gutenberg University Mainz in Germany have recently predicted that the oxide compound BaBiO3 combines two required properties, i.e., topological insulator and superconductivity.

This material has been known for about thirty years as a high-temperature superconductor of Tc of nearly 30 Kelvin with p-type doping. Now it has been discovered to be also a topological insulator with n-type doping. A p-n junction type of simple device assisted by gating or electrolyte gating is proposed to realize Majorana fermions for quantum computation, which does not require a complex interface between two materials.

In addition to their options for use in quantum computers, topological insulators hold great potential applications in the emerging technology of spintronics and thermoelectrics for energy harvesting. One major obstacle for widespread application is the relatively small size of the bulk band gap, which is typically around 0.3 electron-volts (eV) for previously known topological insulator materials. Currently identified material exhibits a much larger energy-gap of 0.7 eV. Inside the energy-gap, metallic topological surface states exist with a Dirac-cone type of band structures.

The research leading to the recent publication in Nature Physics was performed by a team of researchers from Dresden and Mainz around the theoretical physicist Dr. Binghai Yan and the experimental chemists Professor Martin Jansen and Professor Claudia Felser. "Now we are trying to synthesize n-type doped BaBiO3," said Jansen. "And we hope to be soon able to realize our idea."

Publication
Binghai Yan, Martin Jansen, Claudia Felser, A large-energy-gap oxide topological insulator based on the superconductor BaBiO3, Nature Physics, 22 September 2013,

DOI:10.1038/nphys2762

Further information:
Dr. Binghai Yan
Professor Dr. Claudia Felser
Max Planck Institute for Chemical Physics of Solids
D 01187 Dresden, GERMANY
phone +49 351 4646-3001
fax +49 351 4646-3002
e-mail: susanne.zuecker@cpfs.mpg.de
http://www.cpfs.mpg.de/
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-21284
fax +49 6131 39-26267
e-mail: felser-office@uni-mainz.de
http://www.superconductivity.de/
Weitere Informationen:
http://www.uni-mainz.de/presse/16706_ENG_HTML.php
- press release ;
http://www.cpfs.mpg.de/
- Max Planck Institute for Chemical Physics of Solids ;
http://www.superconductivity.de/
- Materials for Optical, Magnetic and Energy Technologies

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>