Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Predict New Superhard Materials

15.09.2011
Stony Brook University researchers, Artem R. Oganov, Professor of Geosciences and Physics and Dr. Andriy O. Lyakhov, Research Fellow, have developed an algorithm capable of predicting new superhard materials.

The findings of their work have just been published in a paper entitled “Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2,” in the current online edition of Physical Review B.

Superhard materials, used in many scientific and technological applications (for example as abrasive coatings in cutting and drilling tools), are a relatively small class of compounds. The most famous and widely used of these are diamond and cubic boron nitride. However, both of them are unstable at high temperatures, which limit their applicability. Therefore, the search for new superhard compounds is of great interest. Despite numerous efforts, progress has been slow. “The traditional trial-and-error approach to search for new materials usually involves a lot of pain and little gain,” explained Prof. Oganov.

Dr. Lyakhov and Prof. Oganov propose to use supercomputers in the search for new superhard materials. Scientists developed a special hybrid evolutionary algorithm, and tested it on a few promising systems, such as carbon and carbon nitride (which many scientists believe to be able to surpass the diamond by hardness). The results show the power of this algorithm and confirm that diamond is the hardest form of carbon and, so far, the hardest material. As a byproduct of the calculations, a set of novel superhard carbon structures was obtained – these are only marginally softer than diamond. It was also shown that carbon nitride cannot be harder than diamond.

Another area where the algorithm can be used is the validation of controversial experimental data. Researchers give an example by dethroning TiO2 as the hardest known oxide. The suggestion that a high-pressure form of TiO2 is the hardest oxide was made by Swedish researchers in a highly-cited paper published in 2001 in Nature. However, calculations show that all possible forms of TiO2 are much softer than common corundum, Al2O3, and therefore the experimental data from 2001 has to be reconsidered. The latest experiments done at Yale University and the University of Tokyo point in the same direction. In the near future, scientists plan to apply their algorithm to promising systems, such as boron-carbon-oxygen compounds, to search for new superhard materials.

The value of this work goes well beyond the field of superhard materials. The optimization of hardness is a successful proof-of-principle example, which opens the way for a novel computational technique. “A new era in material design and discovery is about to begin,” said Prof. Oganov. “New materials with desired properties will be routinely discovered using supercomputers, instead of the expensive trial-and-error method that is used today.”

| Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>