Researchers ‘Nanoweld’ by Applying Light to Aligned Nanorods in Solid Materials

Physicists Jason Bochinski and Laura Clarke, with materials scientist Joe Tracy, placed specifically aligned gold nanorods within a solid material. Gold nanorods absorb light at different wavelengths, depending upon the size and orientation of the nanorod, and then they convert that absorbed light directly into heat. In this case, the nanorods were designed to respond to light wavelengths of 520 nanometers (nm) in a horizontal alignment and 800 nm when vertically aligned. Human beings can see light at 520 nm (it looks green), while 808 nm is in the near infrared spectrum, invisible to our eyes.

When the different wavelengths of light were applied to the material, they melted the fibers along the chosen directions, while leaving surrounding fibers largely intact.

“Being able to heat materials spatially in this way gives us the ability to manipulate very specific portions of these materials, because nanorods localize heat – that is, the heat they produce only affects the nanorod and its immediate surroundings,” Tracy says.

According to Bochinski, the work also has implications for optimizing materials that have already been manufactured: “We can use heat at the nanoscale to change mechanical characteristics of objects postproduction without affecting their physical properties, which means more efficiency and less waste.”

The researchers’ findings appear in Particle & Particle Systems Characterization. The work was funded by grants from the National Science Foundation and Sigma Xi. Graduate students Wei-Chen Wu and Somsubhra Maity and former undergraduate student Krystian Kozek contributed to the work.

Note to editors: An abstract of the paper follows.

“Anisotropic Thermal Processing of Polymer Nanocomposites via the Photothermal Effect of Gold Nanorods”

Authors: Jason Bochinski, Laura Clarke, Joe Tracy, Somsubrha Maity, Krystian Kozek and Wei-Chen Wu, North Carolina State University

Published: Particle & Particle Systems Characterization

Abstract:
By embedding metal nanoparticles within polymeric materials, selective thermal polymer processing can be accomplished via irradiation with light resonant with the nanoparticle surface plasmon resonance due to the photothermal effect of the nanoparticles which efficiently transforms light into heat. The wavelength and polarization sensitivity of photothermal heating from embedded gold nanorods is used to selectively process a collection of polymeric nanofibers, completely melting those fibers lying along a chosen direction while leaving the remaining material largely unheated and unaffected. Fluorescence-based temperature and viscosity sensing was employed to confirm the presence of heating and melting in selected fibers and its absence in counter-aligned fibers. Such tunable specificity in processing a subset of a sample, while the remainder is unchanged, cannot easily be achieved through conventional heating techniques.

Media Contact

Tracey Peake EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors