Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map path to quantum electronic devices

14.05.2012
A team of Duke University engineers has created a master "ingredient list" describing the properties of more than 2,000 compounds that might be combined to create the next generation of quantum electronics devices.

The goal is topological insulators (TI), man-made crystals that are able to conduct electrical current on their surfaces, while acting as insulators throughout the interior of the crystal. Discovering TIs has become of great interest to scientists, but because of the lack of a rational blueprint for creating them, researchers have had to rely on trial-and-error approaches, with limited success to date.

Because of their unique properties, TIs can be created that conduct electricity more efficiently while also being much smaller that conventional wires or devices. They are ideal candidates to become quantum electronics devices, the Duke researchers said.

The "key" developed by the Duke investigators is a mathematical formulation that unlocks the data stored in a database of potential TI ingredients. It provides specific recipes for searching for TIs with the desired properties.

In November, Stefano Curtarolo, professor of mechanical engineering and materials sciences and physics at Duke's Pratt School of Engineering and founder of the Duke's Center for Materials Genomics, and colleagues reported the establishment of a materials genome repository (aflowlib.org) which allows scientists to stop using trial-and-error methods in the search for efficient alloys.

The project developed by the Duke engineers covers thousands of compounds, and provides detailed recipes for creating the most efficient combinations for a particular purpose, much like hardware stores mix different colors of paint to achieve the desired result. The project is the keystone of the newly formed Duke's Center for Materials Genomics.

"While extremely helpful and important, a database is intrinsically a sterile repository of information, without a soul and without life. We need to find the materials' 'genes,'" said Curtarolo. "We have developed what we call the 'topological descriptor,' that when applied to the database can provide the directions for producing crystals with desired properties."

While developing the key to this database, the team also discovered a new class of systems that could not have been anticipated without such a "genetic" approach.

The Duke research was reported online in the journal Nature Materials. The work was supported by the Office of Navy Research and the National Science Foundation.

The new descriptor developed by the Duke team basically can determine status of any specific combination of element under investigation. On one end of the spectrum, Curtarolo explained, is "fragile."

"We can rule those combinations out because, what good is a new type of crystal if it would be too difficult to grow, or if grown, would not likely survive?" Curtarolo said. A second group of combinations would be a middle group termed "feasible."

But what excites Curtarolo most are those combinations found to be "robust." These crystals are stable and can be easily and efficiently produced. Just as importantly, these crystals can be grown in different directions,which gives them the advantage of tailored electrical properties by simple growth processes.

While TIs are currently in the experimental stage, Curtarolo believes that with this new tool, scientists should have a powerful framework for engineering a wide variety of them.

Kesong Yang, a post-doctoral fellow in Curtarolo's laboratory, is first author of the paper. Other members of the team were Duke's Shidong Wang, Wahyu Setyawan, Pacific Northwest Laboratory and Marco Buongiorno Nardelli, University of North Texas and the Oak Ridge National Laboratory.

Citation: "A Search Model for Topological Insulators with High-Throughput Robustness Descriptors," Kesong Yang, et. al., Nature Materials [DOI: 10.1038/NMAT3332].

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>