Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map path to quantum electronic devices

14.05.2012
A team of Duke University engineers has created a master "ingredient list" describing the properties of more than 2,000 compounds that might be combined to create the next generation of quantum electronics devices.

The goal is topological insulators (TI), man-made crystals that are able to conduct electrical current on their surfaces, while acting as insulators throughout the interior of the crystal. Discovering TIs has become of great interest to scientists, but because of the lack of a rational blueprint for creating them, researchers have had to rely on trial-and-error approaches, with limited success to date.

Because of their unique properties, TIs can be created that conduct electricity more efficiently while also being much smaller that conventional wires or devices. They are ideal candidates to become quantum electronics devices, the Duke researchers said.

The "key" developed by the Duke investigators is a mathematical formulation that unlocks the data stored in a database of potential TI ingredients. It provides specific recipes for searching for TIs with the desired properties.

In November, Stefano Curtarolo, professor of mechanical engineering and materials sciences and physics at Duke's Pratt School of Engineering and founder of the Duke's Center for Materials Genomics, and colleagues reported the establishment of a materials genome repository (aflowlib.org) which allows scientists to stop using trial-and-error methods in the search for efficient alloys.

The project developed by the Duke engineers covers thousands of compounds, and provides detailed recipes for creating the most efficient combinations for a particular purpose, much like hardware stores mix different colors of paint to achieve the desired result. The project is the keystone of the newly formed Duke's Center for Materials Genomics.

"While extremely helpful and important, a database is intrinsically a sterile repository of information, without a soul and without life. We need to find the materials' 'genes,'" said Curtarolo. "We have developed what we call the 'topological descriptor,' that when applied to the database can provide the directions for producing crystals with desired properties."

While developing the key to this database, the team also discovered a new class of systems that could not have been anticipated without such a "genetic" approach.

The Duke research was reported online in the journal Nature Materials. The work was supported by the Office of Navy Research and the National Science Foundation.

The new descriptor developed by the Duke team basically can determine status of any specific combination of element under investigation. On one end of the spectrum, Curtarolo explained, is "fragile."

"We can rule those combinations out because, what good is a new type of crystal if it would be too difficult to grow, or if grown, would not likely survive?" Curtarolo said. A second group of combinations would be a middle group termed "feasible."

But what excites Curtarolo most are those combinations found to be "robust." These crystals are stable and can be easily and efficiently produced. Just as importantly, these crystals can be grown in different directions,which gives them the advantage of tailored electrical properties by simple growth processes.

While TIs are currently in the experimental stage, Curtarolo believes that with this new tool, scientists should have a powerful framework for engineering a wide variety of them.

Kesong Yang, a post-doctoral fellow in Curtarolo's laboratory, is first author of the paper. Other members of the team were Duke's Shidong Wang, Wahyu Setyawan, Pacific Northwest Laboratory and Marco Buongiorno Nardelli, University of North Texas and the Oak Ridge National Laboratory.

Citation: "A Search Model for Topological Insulators with High-Throughput Robustness Descriptors," Kesong Yang, et. al., Nature Materials [DOI: 10.1038/NMAT3332].

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>