Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map path to quantum electronic devices

14.05.2012
A team of Duke University engineers has created a master "ingredient list" describing the properties of more than 2,000 compounds that might be combined to create the next generation of quantum electronics devices.

The goal is topological insulators (TI), man-made crystals that are able to conduct electrical current on their surfaces, while acting as insulators throughout the interior of the crystal. Discovering TIs has become of great interest to scientists, but because of the lack of a rational blueprint for creating them, researchers have had to rely on trial-and-error approaches, with limited success to date.

Because of their unique properties, TIs can be created that conduct electricity more efficiently while also being much smaller that conventional wires or devices. They are ideal candidates to become quantum electronics devices, the Duke researchers said.

The "key" developed by the Duke investigators is a mathematical formulation that unlocks the data stored in a database of potential TI ingredients. It provides specific recipes for searching for TIs with the desired properties.

In November, Stefano Curtarolo, professor of mechanical engineering and materials sciences and physics at Duke's Pratt School of Engineering and founder of the Duke's Center for Materials Genomics, and colleagues reported the establishment of a materials genome repository (aflowlib.org) which allows scientists to stop using trial-and-error methods in the search for efficient alloys.

The project developed by the Duke engineers covers thousands of compounds, and provides detailed recipes for creating the most efficient combinations for a particular purpose, much like hardware stores mix different colors of paint to achieve the desired result. The project is the keystone of the newly formed Duke's Center for Materials Genomics.

"While extremely helpful and important, a database is intrinsically a sterile repository of information, without a soul and without life. We need to find the materials' 'genes,'" said Curtarolo. "We have developed what we call the 'topological descriptor,' that when applied to the database can provide the directions for producing crystals with desired properties."

While developing the key to this database, the team also discovered a new class of systems that could not have been anticipated without such a "genetic" approach.

The Duke research was reported online in the journal Nature Materials. The work was supported by the Office of Navy Research and the National Science Foundation.

The new descriptor developed by the Duke team basically can determine status of any specific combination of element under investigation. On one end of the spectrum, Curtarolo explained, is "fragile."

"We can rule those combinations out because, what good is a new type of crystal if it would be too difficult to grow, or if grown, would not likely survive?" Curtarolo said. A second group of combinations would be a middle group termed "feasible."

But what excites Curtarolo most are those combinations found to be "robust." These crystals are stable and can be easily and efficiently produced. Just as importantly, these crystals can be grown in different directions,which gives them the advantage of tailored electrical properties by simple growth processes.

While TIs are currently in the experimental stage, Curtarolo believes that with this new tool, scientists should have a powerful framework for engineering a wide variety of them.

Kesong Yang, a post-doctoral fellow in Curtarolo's laboratory, is first author of the paper. Other members of the team were Duke's Shidong Wang, Wahyu Setyawan, Pacific Northwest Laboratory and Marco Buongiorno Nardelli, University of North Texas and the Oak Ridge National Laboratory.

Citation: "A Search Model for Topological Insulators with High-Throughput Robustness Descriptors," Kesong Yang, et. al., Nature Materials [DOI: 10.1038/NMAT3332].

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Scientists predict a new superhard material with unique properties
17.06.2018 | Moscow Institute of Physics and Technology

nachricht A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive
15.06.2018 | University of California - San Diego

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>