Researchers inspired by marine life to design camouflage systems

It could be a fun party trick – put your cell phone down on a table and watch it fade into the woodwork – or part of a lifesaving technology used by industry or the military.

Researchers have developed a technology that allows a material to automatically read its environment and adapt to mimic its surroundings. The technology is described in a paper published this week in the Proceedings of the National Academy of Sciences.

Cunjiang Yu, assistant professor of mechanical engineering at the University of Houston and lead author of the paper, said the optoelectronic camouflage system was inspired by the skins of cephalopods, a class of marine animals including octopuses, squid and cuttlefish, which can change coloration quickly, both for camouflage and as a form of warning.

Other researchers on the project include John A. Rogers of the University of Illinois at Urbana-Champaign and Yonggang Huang of Northwestern University.

Earlier camouflage systems didn't automatically adapt, Yu said. “Our device sees color and matches it. It reads the environment using thermochromatic material.”

The prototype developed by the researchers works in black and white, with shades of gray, but Yu said it could be designed to work in the full color spectrum. Similarly, he said while the prototype is less than one-inch square, it can be easily scaled up for manufacturing.

The flexible skin of the device is comprised of ultrathin layers, combining semiconductor actuators, switching components and light sensors with inorganic reflectors and organic color-changing materials in such a way to allow autonomous matching to background coloration.

The researchers describe their work as including pixelated devices that include analogs to each of the key elements included in the skin of cephalopods, with two exceptions, the iridophores and central ocular organs.

While the most valuable applications would be for defense or industry, Yu said consumer applications such as toys and wearable electronics also could offer a market for such a technology.

Another possibility? Luxury carmakers now try to give a car's occupants the sensation that the car has disappeared by deploying cameras to shoot videos on the passenger side of the car and using LED mats to display the view. Yu said this technology could be incorporated for a similar purpose.

Media Contact

Jeannie Kever Eurek Alert!

More Information:

http://www.uh.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors