Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at INM in Saarbruecken control the arrangement of nanoparticles via temperature

27.11.2012
It is merely the arrangement of the carbon that makes it look so different. Highly ordered carbon makes a hard gemstone, incoherent and powdery carbon is more appropriate for a barbecue or writing letters.
High pressures and temperatures – natural or artificial – can change the properties of carbon, and graphite becomes diamond. Researchers at the INM – Leibniz Institute for New Materials were surprised to observed similar changes when monitoring nanoparticles: only at elevated temperatures did very small gold nanoparticles arrange into well-ordered crystals. The results were published in the renowned journal "Physical Review Letters".

"The properties of a material - electrical and thermal conductivity, optical transparency, mechanical hardness - depend on its internal structure. If we can control the arrangement of nanoparticles in a material, we should be able to change the properties of the material“, explains Tobias Kraus, Head of the Junior Research Group Structure Formation. The first step towards a modular design system for materials has been taken.

The material scientists from Saarbruecken achieved structural control for gold nanoparticles that are about a billion times smaller than a man: "It was known that such nanoparticles can spontaneously arrange into crystals. But we were really surprised when they only formed crystals when they were hot", says Kraus. The gold nanoparticles that they used were covered with a thin, organic shell. " At low temperatures, these shells are hard," suggests the Ph.D. student Philip Born, who is working with the nanoparticles. “Thus, the shells interdigitate, causing amorphous lumps to form. At higher temperatures, the shells melt and "lubricate" the nanoparticles: Suddenly, we obtain well-ordered crystals", says Born.

In the future, the researchers want to go beyond gold nanoparticles. "If we can also apply this principle to nanoparticles that have other cores and shells, we would have a modular design principle for particle-based materials", says Kraus.

Original publication:
Tihamer Geyer, Philip Born, Tobias Kraus, „Switching between crystallisation and amorphous agglomeration of alkyl thiol-coated gold nanoparticles“, Phys. Rev. Lett. 109, 128302 (2012),
DOI: 10.1103/PhysRevLett.109.128302

Contact:
Dr. Tobias Kraus
Structure Formation at Small Scales
INM – Leibniz Institute for New Materials
Phone: +49 681 9300 389
E-Mail: tobias.kraus@inm-gmbh.de

INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.leibniz-gemeinschaft.de/

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>