Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find New State of Material at the Nanoscale

01.10.2009
Researchers at the University of Arkansas and University of California-Los Angeles have discovered a new kind of quantum state of material at the nanoscale level that appears at low temperatures.

Research professor Sergey Prosandeev and professor Laurent Bellaiche of the University of Arkansas and A.R. Akbarzadeh of the University of California-Los Angeles report the state, called incipient ferrotoroidics, in Physical Review Letters.

The researchers asked what happens to nanoscale materials at low temperatures. Classical mechanics predict that atoms stop moving at low temperatures, but quantum mechanics predict that atoms continue to vibrate even at low temperatures. Such quantum mechanical vibrations are known to cause the disappearance of the spontaneous electric polarization in some bulk materials, and these materials are called incipient ferroelectrics. However, scientists don’t know what happens to nanoscale materials at low temperatures.

“What about the nanoscale ferroelectrics? Do they show quantum effects? Do they suppress polarization or promote new properties?” Prosandeev asked.

To answer these questions, the researchers modified the complicated computer codes aimed at resolving the behavior of bulk incipient ferroelectrics at low temperatures so they would describe nanostructures. They used the high-performance computing facility Star of Arkansas to perform the calculations. They performed both classical and quantum mechanics calculations, some of which took weeks using 128 processors.

At low temperatures, they discovered a new kind of quantum state of material. Called incipient ferrotoroidics, it is a state where quantum vibrations wash out the formation of recently discovered vortex states. This creates a situation where the material’s susceptibility to toroidal moment is high and independent of temperature – meaning that a small, curled field can create a strong vortex at any given moment.

“In electric capacitors we have electrons,” Prosandeev said. “Here we have topological charges instead.”

This means that it should be possible to create a new kind of device — namely, a topological charge capacitor — in nanoscale material at low temperatures. A vortex could be triggered in such a material using small changes in some chiral electric field.

“We predict that there is a way to prepare this original state of material,” Prosandeev said. “This opens the door to a new direction for applications and for thinking.”

This research was supported by grants from the Office of Naval Research and the National Science Foundation.

CONTACTS:
Laurent Bellaiche, 21st Century Endowed Professor in Nanotechnology and Science Education
J. William Fulbright College of Arts and Sciences
479-575-6425, laurent@uark.edu
Sergey Prosandeev, research professor
J. William Fulbright College of Arts and Sciences
479-575-6668, sprossan@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>