Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find New State of Material at the Nanoscale

01.10.2009
Researchers at the University of Arkansas and University of California-Los Angeles have discovered a new kind of quantum state of material at the nanoscale level that appears at low temperatures.

Research professor Sergey Prosandeev and professor Laurent Bellaiche of the University of Arkansas and A.R. Akbarzadeh of the University of California-Los Angeles report the state, called incipient ferrotoroidics, in Physical Review Letters.

The researchers asked what happens to nanoscale materials at low temperatures. Classical mechanics predict that atoms stop moving at low temperatures, but quantum mechanics predict that atoms continue to vibrate even at low temperatures. Such quantum mechanical vibrations are known to cause the disappearance of the spontaneous electric polarization in some bulk materials, and these materials are called incipient ferroelectrics. However, scientists don’t know what happens to nanoscale materials at low temperatures.

“What about the nanoscale ferroelectrics? Do they show quantum effects? Do they suppress polarization or promote new properties?” Prosandeev asked.

To answer these questions, the researchers modified the complicated computer codes aimed at resolving the behavior of bulk incipient ferroelectrics at low temperatures so they would describe nanostructures. They used the high-performance computing facility Star of Arkansas to perform the calculations. They performed both classical and quantum mechanics calculations, some of which took weeks using 128 processors.

At low temperatures, they discovered a new kind of quantum state of material. Called incipient ferrotoroidics, it is a state where quantum vibrations wash out the formation of recently discovered vortex states. This creates a situation where the material’s susceptibility to toroidal moment is high and independent of temperature – meaning that a small, curled field can create a strong vortex at any given moment.

“In electric capacitors we have electrons,” Prosandeev said. “Here we have topological charges instead.”

This means that it should be possible to create a new kind of device — namely, a topological charge capacitor — in nanoscale material at low temperatures. A vortex could be triggered in such a material using small changes in some chiral electric field.

“We predict that there is a way to prepare this original state of material,” Prosandeev said. “This opens the door to a new direction for applications and for thinking.”

This research was supported by grants from the Office of Naval Research and the National Science Foundation.

CONTACTS:
Laurent Bellaiche, 21st Century Endowed Professor in Nanotechnology and Science Education
J. William Fulbright College of Arts and Sciences
479-575-6425, laurent@uark.edu
Sergey Prosandeev, research professor
J. William Fulbright College of Arts and Sciences
479-575-6668, sprossan@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Siberian scientists suggested a new method for synthesizing a promising magnetic material
23.01.2018 | Siberian Federal University

nachricht Complex tessellations, extraordinary materials
23.01.2018 | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>