Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find New State of Material at the Nanoscale

01.10.2009
Researchers at the University of Arkansas and University of California-Los Angeles have discovered a new kind of quantum state of material at the nanoscale level that appears at low temperatures.

Research professor Sergey Prosandeev and professor Laurent Bellaiche of the University of Arkansas and A.R. Akbarzadeh of the University of California-Los Angeles report the state, called incipient ferrotoroidics, in Physical Review Letters.

The researchers asked what happens to nanoscale materials at low temperatures. Classical mechanics predict that atoms stop moving at low temperatures, but quantum mechanics predict that atoms continue to vibrate even at low temperatures. Such quantum mechanical vibrations are known to cause the disappearance of the spontaneous electric polarization in some bulk materials, and these materials are called incipient ferroelectrics. However, scientists don’t know what happens to nanoscale materials at low temperatures.

“What about the nanoscale ferroelectrics? Do they show quantum effects? Do they suppress polarization or promote new properties?” Prosandeev asked.

To answer these questions, the researchers modified the complicated computer codes aimed at resolving the behavior of bulk incipient ferroelectrics at low temperatures so they would describe nanostructures. They used the high-performance computing facility Star of Arkansas to perform the calculations. They performed both classical and quantum mechanics calculations, some of which took weeks using 128 processors.

At low temperatures, they discovered a new kind of quantum state of material. Called incipient ferrotoroidics, it is a state where quantum vibrations wash out the formation of recently discovered vortex states. This creates a situation where the material’s susceptibility to toroidal moment is high and independent of temperature – meaning that a small, curled field can create a strong vortex at any given moment.

“In electric capacitors we have electrons,” Prosandeev said. “Here we have topological charges instead.”

This means that it should be possible to create a new kind of device — namely, a topological charge capacitor — in nanoscale material at low temperatures. A vortex could be triggered in such a material using small changes in some chiral electric field.

“We predict that there is a way to prepare this original state of material,” Prosandeev said. “This opens the door to a new direction for applications and for thinking.”

This research was supported by grants from the Office of Naval Research and the National Science Foundation.

CONTACTS:
Laurent Bellaiche, 21st Century Endowed Professor in Nanotechnology and Science Education
J. William Fulbright College of Arts and Sciences
479-575-6425, laurent@uark.edu
Sergey Prosandeev, research professor
J. William Fulbright College of Arts and Sciences
479-575-6668, sprossan@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>