Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find New State of Material at the Nanoscale

01.10.2009
Researchers at the University of Arkansas and University of California-Los Angeles have discovered a new kind of quantum state of material at the nanoscale level that appears at low temperatures.

Research professor Sergey Prosandeev and professor Laurent Bellaiche of the University of Arkansas and A.R. Akbarzadeh of the University of California-Los Angeles report the state, called incipient ferrotoroidics, in Physical Review Letters.

The researchers asked what happens to nanoscale materials at low temperatures. Classical mechanics predict that atoms stop moving at low temperatures, but quantum mechanics predict that atoms continue to vibrate even at low temperatures. Such quantum mechanical vibrations are known to cause the disappearance of the spontaneous electric polarization in some bulk materials, and these materials are called incipient ferroelectrics. However, scientists don’t know what happens to nanoscale materials at low temperatures.

“What about the nanoscale ferroelectrics? Do they show quantum effects? Do they suppress polarization or promote new properties?” Prosandeev asked.

To answer these questions, the researchers modified the complicated computer codes aimed at resolving the behavior of bulk incipient ferroelectrics at low temperatures so they would describe nanostructures. They used the high-performance computing facility Star of Arkansas to perform the calculations. They performed both classical and quantum mechanics calculations, some of which took weeks using 128 processors.

At low temperatures, they discovered a new kind of quantum state of material. Called incipient ferrotoroidics, it is a state where quantum vibrations wash out the formation of recently discovered vortex states. This creates a situation where the material’s susceptibility to toroidal moment is high and independent of temperature – meaning that a small, curled field can create a strong vortex at any given moment.

“In electric capacitors we have electrons,” Prosandeev said. “Here we have topological charges instead.”

This means that it should be possible to create a new kind of device — namely, a topological charge capacitor — in nanoscale material at low temperatures. A vortex could be triggered in such a material using small changes in some chiral electric field.

“We predict that there is a way to prepare this original state of material,” Prosandeev said. “This opens the door to a new direction for applications and for thinking.”

This research was supported by grants from the Office of Naval Research and the National Science Foundation.

CONTACTS:
Laurent Bellaiche, 21st Century Endowed Professor in Nanotechnology and Science Education
J. William Fulbright College of Arts and Sciences
479-575-6425, laurent@uark.edu
Sergey Prosandeev, research professor
J. William Fulbright College of Arts and Sciences
479-575-6668, sprossan@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>