Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Material for Cleaner-Running Diesel Vehicles

17.08.2012
Discovery May Yield Cheaper, More Efficient Alternative to Platinum in Automotive Engines

Engineers at a company co-founded by a University of Texas at Dallas professor have identified a material that can reduce the pollution produced by vehicles that run on diesel fuel.

The material, from a family of minerals called oxides, could replace platinum, a rare and expensive metal that is currently used in diesel engines to try to control the amount of pollution released into the air.

In a study published in the August 17 issue of Science, researchers found that when a manmade version of the oxide mullite replaces platinum, pollution is up to 45 percent lower than with platinum catalysts.

“Many pollution control and renewable-energy applications require precious metals that are limited – there isn’t enough platinum to supply the millions and millions of automobiles driven in the world,” said Dr. Kyeongjae “K.J.” Cho, professor of materials science and engineering and physics at UT Dallas and a senior author of study. “Mullite is not only easier to produce than platinum, but also better at reducing pollution in diesel engines.”

For the environmentally conscious, the higher fuel efficiency of diesel engines makes an attractive alternative to engines that run on gasoline. On the flip side, compared with gasoline engines, diesel vehicles produce more nitric oxide (NO) and nitrogen dioxide (NO2), which are known as NOx pollutants.

In June, the World Health Organization upgraded the classification of diesel engine exhaust as carcinogenic in humans, putting it in the same category as cigarette smoke and asbestos. Countries throughout the world have drafted guidelines to reduce diesel air pollution in the next decade.

Platinum, because of its expense to mine and limited supply, is considered a precious metal. Estimates suggest that for 10 tons of platinum ore mined, only about 1 ounce of usable platinum is produced.

In 2003, Cho became a co-founder and lead scientist at Nanostellar, a company created to find catalysts through a material design that would replace platinum in reducing diesel exhaust (carbon monoxide, or CO, and NOx pollutants). His company has designed and commercialized a platinum-gold alloy catalyst that is a viable alternative to platinum alone, but until this experiment with mullite, had not found a catalyst made of materials that are less expensive to produce.

Cho, also a visiting professor at Seoul National University in South Korea, and his team suspected that the oxygen-based composition of mullite, originally found off the Isle of Mull in Scotland, might prove to be a suitable alternative. His team synthesized mullite and used advanced computer modeling techniques to analyze how different forms of the mineral interacted with oxygen and NOx. After computer modeling confirmed the efficiency of mullite to consume NOx, researchers used the oxide catalyst to replace platinum in diesel engine experiments.

“Our goal to move completely away from precious metals and replace them with oxides that can be seen commonly in the environment has been achieved,” Dr. Cho said. “We’ve found new possibilities to create renewable, clean energy technology by designing new functional materials without being limited by the supply of precious metals.”

The mullite alternative is being commercialized under the trademark name Noxicat. Dr. Cho and his team will also explore other applications for mullite, such as fuel cells.

Dr. Weichao Wang, who earned his PhD in materials science and engineering in 2011 under Dr. Cho’s supervision in Erik Jonsson School of Engineering and Computer Science at UT Dallas, was lead author of this study. Researchers from the University of Kentucky and Huazhong University of Science and Technology in China were also involved in this work.

The study was supported by the Texas Advanced Computing Center, Nanostellar and the National Research Foundation of South Korea.

Media Contact: LaKisha Ladson, UT Dallas, (972) 883-4183, lakisha.ladson@utdallas.edu

or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

LaKisha Ladson | EurekAlert!
Further information:
http://www.UTDallas.edu
http://www.utdallas.edu/news/2012/8/16-19201__article-wide.html

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>