Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Material for Cleaner-Running Diesel Vehicles

17.08.2012
Discovery May Yield Cheaper, More Efficient Alternative to Platinum in Automotive Engines

Engineers at a company co-founded by a University of Texas at Dallas professor have identified a material that can reduce the pollution produced by vehicles that run on diesel fuel.

The material, from a family of minerals called oxides, could replace platinum, a rare and expensive metal that is currently used in diesel engines to try to control the amount of pollution released into the air.

In a study published in the August 17 issue of Science, researchers found that when a manmade version of the oxide mullite replaces platinum, pollution is up to 45 percent lower than with platinum catalysts.

“Many pollution control and renewable-energy applications require precious metals that are limited – there isn’t enough platinum to supply the millions and millions of automobiles driven in the world,” said Dr. Kyeongjae “K.J.” Cho, professor of materials science and engineering and physics at UT Dallas and a senior author of study. “Mullite is not only easier to produce than platinum, but also better at reducing pollution in diesel engines.”

For the environmentally conscious, the higher fuel efficiency of diesel engines makes an attractive alternative to engines that run on gasoline. On the flip side, compared with gasoline engines, diesel vehicles produce more nitric oxide (NO) and nitrogen dioxide (NO2), which are known as NOx pollutants.

In June, the World Health Organization upgraded the classification of diesel engine exhaust as carcinogenic in humans, putting it in the same category as cigarette smoke and asbestos. Countries throughout the world have drafted guidelines to reduce diesel air pollution in the next decade.

Platinum, because of its expense to mine and limited supply, is considered a precious metal. Estimates suggest that for 10 tons of platinum ore mined, only about 1 ounce of usable platinum is produced.

In 2003, Cho became a co-founder and lead scientist at Nanostellar, a company created to find catalysts through a material design that would replace platinum in reducing diesel exhaust (carbon monoxide, or CO, and NOx pollutants). His company has designed and commercialized a platinum-gold alloy catalyst that is a viable alternative to platinum alone, but until this experiment with mullite, had not found a catalyst made of materials that are less expensive to produce.

Cho, also a visiting professor at Seoul National University in South Korea, and his team suspected that the oxygen-based composition of mullite, originally found off the Isle of Mull in Scotland, might prove to be a suitable alternative. His team synthesized mullite and used advanced computer modeling techniques to analyze how different forms of the mineral interacted with oxygen and NOx. After computer modeling confirmed the efficiency of mullite to consume NOx, researchers used the oxide catalyst to replace platinum in diesel engine experiments.

“Our goal to move completely away from precious metals and replace them with oxides that can be seen commonly in the environment has been achieved,” Dr. Cho said. “We’ve found new possibilities to create renewable, clean energy technology by designing new functional materials without being limited by the supply of precious metals.”

The mullite alternative is being commercialized under the trademark name Noxicat. Dr. Cho and his team will also explore other applications for mullite, such as fuel cells.

Dr. Weichao Wang, who earned his PhD in materials science and engineering in 2011 under Dr. Cho’s supervision in Erik Jonsson School of Engineering and Computer Science at UT Dallas, was lead author of this study. Researchers from the University of Kentucky and Huazhong University of Science and Technology in China were also involved in this work.

The study was supported by the Texas Advanced Computing Center, Nanostellar and the National Research Foundation of South Korea.

Media Contact: LaKisha Ladson, UT Dallas, (972) 883-4183, lakisha.ladson@utdallas.edu

or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

LaKisha Ladson | EurekAlert!
Further information:
http://www.UTDallas.edu
http://www.utdallas.edu/news/2012/8/16-19201__article-wide.html

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>