Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures

27.08.2013
From plastics to silicon to nanotubes? Study describes breakthrough in next-generation material

Move over, silicon. In a breakthrough in the quest for the next generation of computers and materials, researchers at USC have solved a longstanding challenge with carbon nanotubes: how to actually build them with specific, predictable atomic structures.

"We are solving a fundamental problem of the carbon nanotube," said Chongwu Zhou, professor in the Ming Hsieh Department of Electrical Engineering at the USC Viterbi School of Engineering and corresponding author of the study published August 23 in the journal Nano Letters. "To be able to control the atomic structure, or chirality, of nanotubes has basically been our dream, a dream in the nanotube field."

If this is an age built on silicon, then the next one may be built on carbon nanotubes, which have shown promise in everything from optics to energy storage to touch screens. Not only are nanotubes transparent, but this research discovery on how to control the atomic structure of nanotubes will pave the way for computers that are smaller, faster and more energy efficient than those reliant on silicon transistors.

"We are now working on scale up the process," Zhou said. "Our method can revoutionize the field and significantly push forward the real applications of nanotube in many fields."

Until now, scientists were unable to "grow" carbon nanotubes with specific attributes — say metallic rather than semiconducting — instead getting mixed, random batches and then sorting them. The sorting process also shortened the nanotubes significantly, making the material less practical for many applications.

For more than three years, the USC team has been working on the idea of using these short sorted nanotubes as "seeds" to grow longer nanotubes, extending them at high temperatures to get the desired atomic structure.

A paper last year by the same team in Nature Communications outlined the technique, and in the current Nano Letters paper, the researchers report on their latest major success: identifying the "growth recipes" for building carbon nanotubes with specific atomic structures.

"We identify the mechanisms required for mass amplification of nanotubes," said co-lead author Jia Liu, a doctoral student in chemistry at the USC Dornsife College of Letters, Arts and Sciences, recalling the moment when, alone in a dark room, she finally saw the spectral data supporting their method. "It was my Eureka moment."

"To understand nanotube growth behaviors allows us to produce larger amounts of nanotubes and better control that growth," she continued.

Each defined type of carbon nanotube has a frequency at which it expands and contracts. The researchers showed that the newly grown nanotubes had the same atomic structure by matching the Raman frequency.

"This is a very exciting field, and this was the most difficult problem," said co-lead author Bilu Liu, a postdoctoral research associate at the USC Viterbi School of Engineering. "I met Professor Zhou [senior author of the paper] at a conference and he said he wanted to tackle the challenge of controlling the atomic structure of nanotubes. That's what brought me to his lab, because it was the biggest challenge."

In addition, the study found that nanotubes with different structures also behave very differently during their growth, with some nanotube structures growing faster and others growing longer under certain conditions.

"Previously it was very difficult to control the chirality, or atomic structure, of nanotubes, particularly when using metal nanoparticles," Bilu Liu said. "The structures may look quite similar, but the properties are very different. In this paper we decode the atomic structure of nanotubes and show how to control precisely that atomic structure."

Additional authors of the study are Jialu Zhang of USC and Xiaomin Tu and Ming Zheng of the National Institute of Standards and Technology,.

The research was funded by the Office of Naval Research and the Defense Threat Reduction Agency of the U.S. Department of Defense.

Suzanne Wu | EurekAlert!
Further information:
http://www.usc.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>