Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Envision High-Tech Applications for 'Multiferroic' Crystals

Two of The Florida State University’s most accomplished scientists recently joined forces on a collaborative research project that has yielded groundbreaking results involving an unusual family of crystalline minerals.

Their findings could lay the groundwork for future researchers seeking to develop a new generation of computer chips and other information-storage devices that can hold vast amounts of data and be strongly encrypted for security purposes.

Working with a team of researchers from various disciplines, Naresh S. Dalal and Sir Harold W. “Harry” Kroto, both world-renowned chemists and educators, took a close look at a family of crystals known as metal-organic frameworks, or MOFs. Employing both laboratory experimentation and computational analysis, they found that four such crystals possessed properties that rarely coexist.

“We identified these four crystals as ‘multiferroic,’ meaning that they are simultaneously ferromagnetic and ferroelectric in nature when cooled to a specific temperature,” said Dalal, Florida State’s Dirac Professor of Chemistry and Biochemistry. (Ferromagnetism means a material possesses magnetic poles, while ferroelectricity refers to a material that possesses positive and negative electrical charges that can be reversed when an external electrical field is applied.)

“Normally, these two properties are mutually exclusive,” Dalal said. “Most materials are either ferromagnetic or ferroelectric based on the number of electrons in the ion’s outer electron shell. Therefore, finding four multiferroic materials at one time is quite scientifically significant and opens numerous doors in terms of potential applications.”

Multiferroic materials have been a hot topic of research in recent years, with researchers finding applications in the areas of hydrogen storage and the design of advanced optical elements, among others. Kroto sees another potential use: in the creation of high-powered computer memories and other data storage devices that can hold far more information than is currently possible.

“Theoretically, it might be possible to design devices that are much smaller and faster than the ones we use today to store and transmit data,” said Kroto, a Francis Eppes Professor in Florida State’s Department of Chemistry and Biochemistry. “And with data split over two mediums, information could be encrypted in a way that makes it far more secure than is currently possible. This could have wide-ranging applications in areas as diverse as the aeronautics industry, the military, the workplace and even the average consumer’s home.”

Dalal pointed to another possible benefit — high-tech devices that make far less of an environmental impact.

“The four new multiferroic crystals that we have identified all substitute other, less toxic metals for lead, which is a potent neurotoxin,” he said. “By reducing the amount of lead that enters landfills, we also reduce the amount that enters our water supply — and our bodies.”

Dalal, Kroto and their colleagues recently published a paper on their findings in the peer-reviewed Journal of the American Chemical Society (JACS). Their research was then summarized in a second article published in the prestigious international science journal Nature — a powerful symbol of the significance with which their findings have been greeted within the worldwide scientific community.

“On the basis of the type of materials research I was keen to initiate here at Florida State, it was natural to collaborate with Dr. Dalal due to his deep understanding of the complexities of phase transitions,” Kroto said. “It is in particular the subtle aspects of phase behavior, well beyond those traditional ones exhibited by normal gases, liquids and solids, that led to this work being highlighted recently by Nature and Angewandte Chemie.” (The latter is a prominent, peer-reviewed scientific journal that reviews all aspects of chemistry.)

In addition to Dalal and Kroto, other collaborators from Florida State were Ronald J. Clark, an emeritus professor of chemistry and biochemistry who continues to conduct research; Prashant Jain, a graduate research assistant; and Vasanth Ramachandran, a graduate teaching assistant. Additional researchers were Haidong Zhou, an assistant scholar/scientist at the National High Magnetic Field Laboratory in Tallahassee; Anthony K. Cheetham, Professor of Materials Science and Metallurgy at the University of Cambridge in England; and Brian H. Toby, a senior physicist at Argonne National Laboratory in Illinois.

In the world of science, Dalal and Kroto are known as scientific heavy hitters, each with decades of research experience and scores of professional accolades to his credit. Kroto is perhaps best known as one of three recipients of the 1996 Nobel Prize for Chemistry and Biochemistry for his co-discovery of buckminsterfullerene, a form of pure carbon better known as “buckyballs.” He came to Florida State in 2004 after 37 years at the University of Sussex in England. Dalal, meanwhile, was recognized in 2007 as one of the top scientists in the southern United States by the Memphis Section of the American Chemical Society, which selected him to receive its Southern Chemist Award. That same year, he was named the top chemist in Florida by the Florida Section of the American Chemical Society, which bestowed upon him its annual Florida Award.

CONTACT: Naresh S. Dalal; (850) 644-3398,
or Harold W. Kroto; (850) 644-8274,

Naresh S. Dalal | Newswise Science News
Further information:

Further reports about: Biochemistry CHEMISTRY Envision Merit Award Nature Immunology Nobel Prize crystals

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>