Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Properties of World's Thinnest Material

15.06.2010
Graphene oxide, a single-atomic-layered material made by reacting graphite powders with strong oxidizing agents, has attracted a lot of interest from scientists because of its ability to easily convert to graphene — a hotly studied material that scientists believe could be used to produce low-cost carbon-based transparent and flexible electronics.

But to Jiaxing Huang, assistant professor of materials science and engineering, and his research group at the McCormick School of Engineering and Applied Science at Northwestern University, graphene oxide itself is even more interesting. Huang and his group have studied the material for years and have discovered how to assemble these soft sheets like floating water lilies pads. They also used a camera flash to turn them into graphene, and invented a fluorescence quenching technique to make them visible under microscopes.

Now, working with Kenneth R. Shull, professor of materials science and engineering, they have discovered that graphene oxide sheets behave like surfactants, the chemicals in soap and shampoo that make stains disperse in water. The team’s results are published online in the Journal of the American Chemical Society.

Graphene oxide has been known in the scientific world for more than a century and was largely described as hydrophilic, or attracted to water. But Huang and his research group thought that graphene oxide should be amphiphilic, a property of surfactants that can both attracts and repels water, because part of the graphene oxide structure is actually water repelling.

“We view graphene oxide as a soft material,” Huang says. “For example, it is essentially two-dimensional polymers composed of carbon, hydrogen and oxygen. They are also colloidal particles with very exotic shapes.”

To test their hypothesis, Huang and his group put graphene oxide in carbonated water. They found that the sheets can hitchhike onto the rising bubbles to reach the water surface — just like a surfactant would do. Next they found that graphite oxide can disperse oil droplets in water — just like a surfactant would.

This new insight into a fundamental property of the material, according to Huang, is important for understanding how graphene oxide is processed and handled. It could lead to new applications for the material.

Its surfactant properties mean it could be used as a dispersing agent for insoluble materials, like carbon nanotubes. Common surfactants are non-conducting, so when used as a dispersing agent for conducting materials, they need to be removed from the material. Graphite oxide, which turns into conducting graphene through heating, would actually help conductivity.

The surfactant behavior inspired another exciting discovery — that water surface can act as a filter for separating graphene oxide sheets by size.

“The smaller the sheet, the more water-liking it becomes, so eventually it will sink into water,” Huang says. This effect makes it easier to harvest large sheets of graphene oxide, which are more useful for graphene device fabrication.

This work was funded by the National Science Foundation. In addition to Huang and Shull, the other authors of the paper include graduate students Jaemyung Kim, Laura Cote, Wa Yuan and postdoc Franklin Kim.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>