Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New, Controllable State in Ferroelectric Nanowires

01.04.2010
Researchers at the University of Arkansas and their colleagues have discovered a new phase in ferroelectric nanowires that could be controlled to optimize important properties for future electronic devices.

Lydie Louis and Laurent Bellaiche of the University of Arkansas; P. Gemeiner, G. Geneste and B. Dkhil of the École Centrale Paris; Inna Ponomareva of the University of South Florida; and W. Ma and N. Setter of the Swiss Federal Institute of Technology reported their findings in Nano Letters.

Ferroelectric materials are used in medical ultrasound to examine fetuses and internal organs, in military sonar for underwater navigation and detection, and in cell phones. These materials have a spontaneous charge separation that allows them to generate an electric field when their shape is changed — thus mechanical energy becomes electrical energy. Potential applications for ferroelectric nanowires include data storage memories and energy harvesting devices.

“Industry wants materials to be multifunctional, to have many different properties at the same time,” said Louis. “Therefore we have to understand the properties that arise under different conditions.”

Louis and her colleagues performed theoretical calculations and conducted experiments and found that the ferroelectric nanowires went through different structural phases at different temperatures, including a new phase not seen before.

“We also found out we could control the phase with a certain screening parameter,” she said. The scientists could alter the direction of polarization within this phase by changing the magnitude of the depolarization field and the size of the nanostructure itself, implying that one can “tune” the physical properties of these nanowires.

The researchers used X-ray diffraction and Raman spectroscopy to examine ferroelectric nanowires made from one material, potassium niobate, and performed first-principles-based calculations on nanowires based on another ferroelectric material with similar properties, barium titanate, by using the Star of Arkansas, a supercomputer at the University of Arkansas.

The theoretical calculations and experimental findings complemented one another.

“This shows the reliability of our computations,” Louis said.

Louis is a graduate student in a joint doctoral program between the University of Arkansas and École Centrale de Paris in France, which is sponsored by the National Science Foundation. Bellaiche is the Twenty-First Century Professor in Nanotechnology and Science Education in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Laurent Bellaiche, Twenty-First Century Professor in Nanotechnology and Science Education
J. William Fulbright College of Arts and Sciences
479-575-6425, laurent@uark.edu
Lydie Louis, graduate research assistant, physics
J. William Fulbright College of Arts and Sciences
louis.lydie@gmail.com
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>