Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new method of trapping multiple particles using fluidics

29.03.2016

Precise control of an individual particle or molecule is a difficult task. Controlling multiple particles simultaneously is an even more challenging endeavor. Researchers at the University of Illinois have developed a new method that relies on fluid flow to manipulate and assemble multiple particles. This new technique can trap a range of submicron- to micron-sized particles, including single DNA molecules, vesicles, drops or cells.

"This is a fundamentally new method for trapping multiple particles in solution," said Charles M. Schroeder, a U. of I. professor of chemical and biomolecular engineering. Schroeder conducted the research with mechanical science and engineering graduate student Anish Shenoy and chemical and biomolecular engineering professor Christopher Rao.


Using the Stokes Trap, the researchers can manipulate particles to follow any predetermined path.

Image courtesy of Anish Shenoy

The study results were reported in the Proceedings of the National Academy of Sciences.

Many methods exist for particle trapping, with each type using a different modality for trapping - including optical, magnetic, acoustic and electrical forces. However, many of these techniques change or perturb the system that is being observed.

"The existing techniques can be very restrictive in particle properties required for trapping, and we wanted to study a broad range of systems like bacterial cells and different types of soft particles like vesicles, bubbles and droplets," Shenoy said. None of the prevailing techniques can be used for studying this broad range of systems across multiple length scales, he said. Thus, the researchers wanted to build a technique that could be generally applied to arbitrary numbers of arbitrary kinds of particles.

Called the Stokes Trap, the method developed by Schroeder's team relies on gentle fluid flow to manipulate particles. Schroeder's group is the first to implement multiple particle trapping and assembly using fluid flow.

In order to control the movement of the particles from a set starting position to a set ending position, Shenoy and his colleagues developed an automated control algorithm that calculates which pressures are required to drive the flow fields and precisely move the particles in a small microdevice. The algorithm can solve the complex optimization problem in half a millisecond, he said.

"There are multiple parameters involved in the controller, and that's the complicated part of it," Schroeder said.

The control program is designed to calculate the particles' distance from a target position and move them efficiently by minimizing the flow rate necessary to move the particles. It also will allow researchers to assemble multiple particles into arbitrary, complex structures and to probe interactions between two or more particles.

The group hopes the Stokes Trap will become as universal as other commonly used trapping methods.

"This is not only another method in the toolbox but it also has several advantages over other methods," Schroeder said. "As long as you can see a particle and detect it in some way, you can trap it."

###

This research was supported by an FMC Educational Fund Fellowship; a Packard Fellowship from the David and Lucile Packard Foundation; and an NSF CAREER Award (CBET 1254340) from the National Science Foundation.

Editor's notes:

To reach Charles Schroeder, call 217-333-3906; email cms@illinois.edu [LINK].

The paper "Stokes trap for multiplexed particle manipulation and assembly using fluidics" is available online or from the News Bureau.

Media Contact

Sarah Banducci
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Sarah Banducci | EurekAlert!

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>