Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new method of trapping multiple particles using fluidics

29.03.2016

Precise control of an individual particle or molecule is a difficult task. Controlling multiple particles simultaneously is an even more challenging endeavor. Researchers at the University of Illinois have developed a new method that relies on fluid flow to manipulate and assemble multiple particles. This new technique can trap a range of submicron- to micron-sized particles, including single DNA molecules, vesicles, drops or cells.

"This is a fundamentally new method for trapping multiple particles in solution," said Charles M. Schroeder, a U. of I. professor of chemical and biomolecular engineering. Schroeder conducted the research with mechanical science and engineering graduate student Anish Shenoy and chemical and biomolecular engineering professor Christopher Rao.


Using the Stokes Trap, the researchers can manipulate particles to follow any predetermined path.

Image courtesy of Anish Shenoy

The study results were reported in the Proceedings of the National Academy of Sciences.

Many methods exist for particle trapping, with each type using a different modality for trapping - including optical, magnetic, acoustic and electrical forces. However, many of these techniques change or perturb the system that is being observed.

"The existing techniques can be very restrictive in particle properties required for trapping, and we wanted to study a broad range of systems like bacterial cells and different types of soft particles like vesicles, bubbles and droplets," Shenoy said. None of the prevailing techniques can be used for studying this broad range of systems across multiple length scales, he said. Thus, the researchers wanted to build a technique that could be generally applied to arbitrary numbers of arbitrary kinds of particles.

Called the Stokes Trap, the method developed by Schroeder's team relies on gentle fluid flow to manipulate particles. Schroeder's group is the first to implement multiple particle trapping and assembly using fluid flow.

In order to control the movement of the particles from a set starting position to a set ending position, Shenoy and his colleagues developed an automated control algorithm that calculates which pressures are required to drive the flow fields and precisely move the particles in a small microdevice. The algorithm can solve the complex optimization problem in half a millisecond, he said.

"There are multiple parameters involved in the controller, and that's the complicated part of it," Schroeder said.

The control program is designed to calculate the particles' distance from a target position and move them efficiently by minimizing the flow rate necessary to move the particles. It also will allow researchers to assemble multiple particles into arbitrary, complex structures and to probe interactions between two or more particles.

The group hopes the Stokes Trap will become as universal as other commonly used trapping methods.

"This is not only another method in the toolbox but it also has several advantages over other methods," Schroeder said. "As long as you can see a particle and detect it in some way, you can trap it."

###

This research was supported by an FMC Educational Fund Fellowship; a Packard Fellowship from the David and Lucile Packard Foundation; and an NSF CAREER Award (CBET 1254340) from the National Science Foundation.

Editor's notes:

To reach Charles Schroeder, call 217-333-3906; email cms@illinois.edu [LINK].

The paper "Stokes trap for multiplexed particle manipulation and assembly using fluidics" is available online or from the News Bureau.

Media Contact

Sarah Banducci
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Sarah Banducci | EurekAlert!

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>