Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Method to Study the Atomic Structure of Complex Surfaces

12.10.2012
With a novel idea, a lot of work and some of the world’s most sophisticated equipment, researchers at McMaster University have developed a new way to study the structures of complex surfaces, opening the door to future discoveries in materials, energy and technology.

Scientists from the Canadian Centre for Microscopy on the McMaster campus, working with a colleague from Université Pierre et Marie Curie in Paris, France, developed the new method by using transmission electron microscopy. It’s a technique so powerful that it can be used to visualize and identify individual atoms at magnifications of several million times.

The centre’s mandate is to provide unique electron microscopy capabilities and expertise to researchers working on a broad range of national and international materials-research projects. It is home to one of the world's most advanced and powerful electron microscopes, the Titan 80-300 Cubed.

The new research appears in the prestigious journal Nature. The scientists describe how they developed the method for looking at metal oxides, in this case strontium titanate, a notoriously challenging surface to study, but one that holds promise for many applications, including efficient lighting, energy generation and future information technology systems.

Gianluigi Botton, scientific director of the centre, said that until now, it had been nearly impossible to completely elucidate the atomic structure of the surface oxide from that of the material itself, due to the physical limitations of existing techniques.

Now, having shown that transmission electron microscopy can do the job, scientists can apply the same method to other challenging surfaces, with the promise of making it easier to split water to extract hydrogen for fuel, or to invent completely new types of electronic devices, for example.

“Surfaces are all around us,” Botton explained. “Understanding their properties at this level can open up many possibilities.”

For more information, please contact:

Wade Hemsworth
Public Relations Manager
McMaster University
905-525-9140 ext. 27988
hemswor@mcmaster.ca
Michelle Donovan
Public Relations Manager
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca

Wade Hemsworth | Newswise Science News
Further information:
http://www.mcmaster.ca

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>