Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Method to Study the Atomic Structure of Complex Surfaces

12.10.2012
With a novel idea, a lot of work and some of the world’s most sophisticated equipment, researchers at McMaster University have developed a new way to study the structures of complex surfaces, opening the door to future discoveries in materials, energy and technology.

Scientists from the Canadian Centre for Microscopy on the McMaster campus, working with a colleague from Université Pierre et Marie Curie in Paris, France, developed the new method by using transmission electron microscopy. It’s a technique so powerful that it can be used to visualize and identify individual atoms at magnifications of several million times.

The centre’s mandate is to provide unique electron microscopy capabilities and expertise to researchers working on a broad range of national and international materials-research projects. It is home to one of the world's most advanced and powerful electron microscopes, the Titan 80-300 Cubed.

The new research appears in the prestigious journal Nature. The scientists describe how they developed the method for looking at metal oxides, in this case strontium titanate, a notoriously challenging surface to study, but one that holds promise for many applications, including efficient lighting, energy generation and future information technology systems.

Gianluigi Botton, scientific director of the centre, said that until now, it had been nearly impossible to completely elucidate the atomic structure of the surface oxide from that of the material itself, due to the physical limitations of existing techniques.

Now, having shown that transmission electron microscopy can do the job, scientists can apply the same method to other challenging surfaces, with the promise of making it easier to split water to extract hydrogen for fuel, or to invent completely new types of electronic devices, for example.

“Surfaces are all around us,” Botton explained. “Understanding their properties at this level can open up many possibilities.”

For more information, please contact:

Wade Hemsworth
Public Relations Manager
McMaster University
905-525-9140 ext. 27988
hemswor@mcmaster.ca
Michelle Donovan
Public Relations Manager
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca

Wade Hemsworth | Newswise Science News
Further information:
http://www.mcmaster.ca

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>