Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate size quantization of Dirac fermions in graphene

20.05.2016

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.


This is a dirac cone showing a typical dispersion relation (energy vs. momentum) for 2-D graphene material. Red cross-sectional lines represent quantization of the energy (and momentum) due to a finite size constriction.

Credit: B. Terrés, L. A. Chizhova, F. Libisch, J. Peiro, D. Jörger, S. Engels, A. Girschik, K. Watanabe, T. Taniguchi, S. V. Rotkin, J. Burgdörfer, C. Stampfer

One of the most direct manifestations of quantum mechanics is quantization. Quantization results in the discrete character of physical properties at small scales, which could be the radius of an atomic orbit or the resistance of a molecular wire. The most famous one, which won Albert Einstein the Nobel Prize, is the quantization of the photon energy in the photoelectric effect-- the observation that many metals emit electrons when light shines upon them.

Quantization occurs when a quantum particle is confined to a small space. Its wave function develops a standing wave pattern, like waves in a small puddle. Physicists then speak of size quantization: the energy of the particle may only take those values where the nodal pattern of the standing wave matches the system boundary.

A striking consequence of size quantization is quantized conductance: the number of particles that can simultaneously traverse a narrow corridor, a so-called nanoconstriction, become discrete. As a result the current through such a constriction is an integer multiple of the quantum of conductance.

In a recent joint experimental and theoretical work, an international group of physicists demonstrated size quantization of charge carriers, i.e. quantized conductance in nanoscale samples of graphene. The results have been published in an article called "Size quantization of Dirac fermions in graphene constrictions" in Nature Communications.

The high-quality material graphene, a single-atomic layer of carbon, embedded in hexagonal boron nitride demonstrates unusual physics due to the hexagonal--or honey comb--symmetry of its lattice. However, observing size quantization of charge carriers in graphene nanoconstrictions has, until now, proved elusive due to the high sensitivity of the electron wave to disorder.

The researchers demonstrated quantization effects at very low temperatures (liquid Helium), where the influence of thermal disorder ceases. This new approach--of encapsulating graphene constrictions between layers of boron nitride--allowed for exceptionally clean samples, and thus highly accurate measurements.

At zero magnetic field, the measured current shows clear signatures of size quantization, closely following theoretical predictions. For increasing magnetic field, these structures gradually evolve into the Landau levels of the quantum Hall effect.

"The high sensitivity of this transition to scattering at the constriction edges reveals indispensable details about the role of edge scattering in future graphene nanoelectronic devices," said Slava V. Rotkin, professor of physics and materials science & engineering at Lehigh University and a co-author of the study.

Media Contact

Lori Friedman
lof214@lehigh.edu
610-758-3224

 @lehighu

http://www.lehigh.edu

Lori Friedman | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>