Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Demonstrate ‘Giant’ Forces in Super-Strong Nanomaterials

25.09.2012
In a study that could lead to advances in the emerging fields of optical computing and nanomaterials, researchers at Missouri University of Science and Technology report that a new class of nanoscale slot waveguides pack 100 to 1,000 times more transverse optical force than conventional silicon slot waveguides

The findings could lead to advances in developing optical computers, sensors or lasers, say researchers Dr. Jie Gao and Dr. Xiaodong Yang, both assistant professors of mechanical engineering at Missouri S&T.

In their research article, published in the Sept. 24 issue of Optics Express, Gao and Yang describe the unusual optical and mechanical properties of nanometer-scale metal-dielectric structures called metamaterials. The researchers created computer simulations of nanometer-scale models of metamaterial slot waveguides, which are structures designed to channel beams of light from one area to another. Waveguides function like tiny filaments or the wires of an integrated circuit, but on a much smaller scale.

For their study, the Missouri S&T researchers simulated slot waveguides made of layered structures of a metal (in this case, silver) and a dielectric material (germanium), arranged like the alternating bread and meat in a club sandwich. A nanometer – visible only with the aid of a high-power electron microscope – is one billionth of a meter, and some nanomaterials are only a few atoms in size.

Gao and Yang simulated what would happen with modeled identical waveguides – each 40 nanometers wide and 30 nanometers tall – that were stacked with a tiny air gap between them. They then measured the transverse optical force between the two waveguides. Optical force refers to the way beams of light can be made to attract or repel each other, as magnets do.

In their experiments on the simulated metamaterials, the Missouri S&T researchers found that “the transverse optical forces in slot waveguides of hyperbolic metamaterials can be over two orders of magnitude stronger than that in conventional dielectric slot waveguides.” For this reason, Gao and Yang describe the magnitude as “giant” in the title of their Optics Express article, “Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials.”

“The calculation on realistic metal-dielectric multilayer structures indicates that the predicted giant optical forces are achievable in experiments,” the researchers explain in their Optics Express article. They add that their finding “will open the door for various optomechanical applications in nanoscale, such as optical nanoelectromechanical systems, optical sensors and actuators.”

By experimenting with materials at the nanometer level, researchers often find that even common materials exhibit unusual properties. For example, metals developed at the nanometer scale may have fewer defects and could lead to stronger materials for construction. Semiconductors and magnetic materials developed at the nanometer scale may have different properties than the bulk material.

The team also recently described the optical properties of a single metamaterial waveguide in the Journal of the Optical Society of America. The paper is titled “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices” (JOSA B, Vol. 29, Issue 9, pp. 2559-2566 2012).

Earlier this year, Yang was the lead author of an article published in Nature Photonics that described how nanoscale three-dimensional optical cavities made from metamaterials can generate the most powerful nanolaser beams to date. The Nature Photonics paper described how this new class of optical cavities holds promise for other technologies, including photonic integrated circuits, LEDs, quantum optics, nonlinear optics and optical sensing.

Gao and Yang plan to move their research from modeling and simulation to actual fabrication of metamaterials. Working with the Materials Research Center at Missouri S&T, the two are able to use a focused ion beam (FIB) scanning electron microscope to modify materials being analyzed. But the two also hope to develop a nanofabrication facility at Missouri S&T.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>