Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Continue Search for Elusive New Particles at CERN

06.12.2010
Though sought at much higher energies than before, researchers at Texas Tech University associated with a Compact Muon Solenoid (CMS) experiment at CERN’s Large Hadron Collider (LHC) continue to seek the elusive new particles, which, if found, could answer some of the most profound questions about the structure of matter and the evolution of the early universe.

Sung-Won Lee, an assistant professor of physics at Texas Tech and a member of the university’s High Energy Physics Group, said researchers have not given up finding any possible hints of new physics, which could add more subatomic particles to the Standard Model of particle physics.

Their findings were published recently in Physical Review Letters. Their results are the first of the “new physics” research papers produced from the CMS experiment at LHC.

“So far, we have not yet found any hint of the new particles with early LHC data, but we set the world’s most stringent limits on the existence of several theorized new types of particles,” said Lee, who co-led the analysis team searching for these new particles.

Currently, the Standard Model of physics only explains about 5 percent of the universe, Lee said.

“The Standard Model of particle physics has been enormously successful, but it leaves many important questions unanswered,” Lee said. “Also, it is widely acknowledged that, from the theoretical standpoint, the Standard Model must be part of a larger theory, known as ‘beyond the Standard Model,’ which is yet to be experimentally confirmed.”

Finding evidence of new particles could open the door to whole new realms of physics that researchers believe could be there, such as string theory, which posits that subatomic particles such as electrons and quarks are not zero-dimensional objects, but rather one-dimensional lines, or “strings.” It could also help prove space-time-matter theory, which requires the existence of several extra spatial dimensions to the universe as well as length, width, height and time.

One of the most popular suggestions for the ‘beyond the Standard Model’ theory is Supersymmetry, which introduces a new symmetry between fundamental particles, he said. Supersymmetry signals are of particular interest, as they provide a natural explanation for the “dark matter” known to pervade our universe and help us to understand the fundamental connection between particle physics and cosmology.

Furthermore there are a large number of important theoretical models that make strong cases for looking for new physics at the LHC.

“Basically, we’re looking for the door to new theories such as string theory, extra dimensions and black holes,” Lee said. “None of the rich new spectrum of particles predicted by these models has yet been found within the kinematic regime reachable at the present experiments. The LHC will increase this range dramatically after several years of running at the highest energy and luminosity.

“I believe that, with our extensive research experience, Texas Tech’s High Energy Physics Group can contribute to making such discoveries.”

Find Texas Tech news, experts and story ideas at www.media.ttu.edu.

CONTACT: Sung-Won Lee, assistant professor of physics, Department of Physics, Texas Tech University, (806) 742-3730 or sungwon.lee@ttu.edu

Sung-Won Lee | Newswise Science News
Further information:
http://www.media.ttu.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>