Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher seeks to understand corrosion

24.09.2008
A Binghamton University researcher hopes to shed light on why and how metals suffer corrosion, especially when under various types of stress.

Guangwen Zhou, an assistant professor in the Department of Mechanical Engineering, will use state-of-the-art techniques involving transmission electron microscopy, or TEM, to observe the oxidation process.

Oxidation is the loss of electrons by a molecule, atom or ion. One common example is the rust that results when a metal such as iron comes into contact with moist air.

Preventing rust and related damage is of vital interest to materials engineers as well as industry. An estimated 3 to 5 percent of the United States’ gross domestic product is spent on the repair of corrosion-related damage, Zhou said.

“This fundamental research can improve our understanding of metal oxidation on a nanometer scale,” he said. “This is increasingly critical as the dimensions of devices continue to shrink to nanoscale.”

The study, which will help in the search for substances that can protect the surface of metals, has implications for a number of fields, including thin film processing and fuel cells.

Zhou, whose work is supported by a new three-year, $250,000 National Science Foundation grant as well as a two-year, $50,000 grant from the American Chemical Society, will collaborate with Brookhaven National Laboratory and the University of Pittsburgh for the project.

He will apply stress to samples of copper and use in situ transmission electron microscopy to observe what happens on the nanoscale level when oxygen gas is introduced. Zhou said he has already begun training several graduate students in the unique microscopy techniques, which will allow researchers to visualize the reactions in real time.

About Guangwen Zhou:

Guangwen Zhou, who joined the Binghamton faculty in 2007, earned a doctorate in materials science at the University of Pittsburgh. He received a master’s in physics from Beijing University of Technology in Beijing, China, and a bachelor’s in physics from Xiangtan University in Xiangtan, China.

Zhou, who did post-doctoral research at Argonne National Laboratory, has published nearly 40 referred journal articles.

Guangwen Zhou | Binghamton Research News
Further information:
http://www.binghamton.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>