Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher seeks to understand corrosion

24.09.2008
A Binghamton University researcher hopes to shed light on why and how metals suffer corrosion, especially when under various types of stress.

Guangwen Zhou, an assistant professor in the Department of Mechanical Engineering, will use state-of-the-art techniques involving transmission electron microscopy, or TEM, to observe the oxidation process.

Oxidation is the loss of electrons by a molecule, atom or ion. One common example is the rust that results when a metal such as iron comes into contact with moist air.

Preventing rust and related damage is of vital interest to materials engineers as well as industry. An estimated 3 to 5 percent of the United States’ gross domestic product is spent on the repair of corrosion-related damage, Zhou said.

“This fundamental research can improve our understanding of metal oxidation on a nanometer scale,” he said. “This is increasingly critical as the dimensions of devices continue to shrink to nanoscale.”

The study, which will help in the search for substances that can protect the surface of metals, has implications for a number of fields, including thin film processing and fuel cells.

Zhou, whose work is supported by a new three-year, $250,000 National Science Foundation grant as well as a two-year, $50,000 grant from the American Chemical Society, will collaborate with Brookhaven National Laboratory and the University of Pittsburgh for the project.

He will apply stress to samples of copper and use in situ transmission electron microscopy to observe what happens on the nanoscale level when oxygen gas is introduced. Zhou said he has already begun training several graduate students in the unique microscopy techniques, which will allow researchers to visualize the reactions in real time.

About Guangwen Zhou:

Guangwen Zhou, who joined the Binghamton faculty in 2007, earned a doctorate in materials science at the University of Pittsburgh. He received a master’s in physics from Beijing University of Technology in Beijing, China, and a bachelor’s in physics from Xiangtan University in Xiangtan, China.

Zhou, who did post-doctoral research at Argonne National Laboratory, has published nearly 40 referred journal articles.

Guangwen Zhou | Binghamton Research News
Further information:
http://www.binghamton.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>