Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher seeks to understand corrosion

24.09.2008
A Binghamton University researcher hopes to shed light on why and how metals suffer corrosion, especially when under various types of stress.

Guangwen Zhou, an assistant professor in the Department of Mechanical Engineering, will use state-of-the-art techniques involving transmission electron microscopy, or TEM, to observe the oxidation process.

Oxidation is the loss of electrons by a molecule, atom or ion. One common example is the rust that results when a metal such as iron comes into contact with moist air.

Preventing rust and related damage is of vital interest to materials engineers as well as industry. An estimated 3 to 5 percent of the United States’ gross domestic product is spent on the repair of corrosion-related damage, Zhou said.

“This fundamental research can improve our understanding of metal oxidation on a nanometer scale,” he said. “This is increasingly critical as the dimensions of devices continue to shrink to nanoscale.”

The study, which will help in the search for substances that can protect the surface of metals, has implications for a number of fields, including thin film processing and fuel cells.

Zhou, whose work is supported by a new three-year, $250,000 National Science Foundation grant as well as a two-year, $50,000 grant from the American Chemical Society, will collaborate with Brookhaven National Laboratory and the University of Pittsburgh for the project.

He will apply stress to samples of copper and use in situ transmission electron microscopy to observe what happens on the nanoscale level when oxygen gas is introduced. Zhou said he has already begun training several graduate students in the unique microscopy techniques, which will allow researchers to visualize the reactions in real time.

About Guangwen Zhou:

Guangwen Zhou, who joined the Binghamton faculty in 2007, earned a doctorate in materials science at the University of Pittsburgh. He received a master’s in physics from Beijing University of Technology in Beijing, China, and a bachelor’s in physics from Xiangtan University in Xiangtan, China.

Zhou, who did post-doctoral research at Argonne National Laboratory, has published nearly 40 referred journal articles.

Guangwen Zhou | Binghamton Research News
Further information:
http://www.binghamton.edu

More articles from Materials Sciences:

nachricht Nanotube fibers in a jiffy
12.01.2018 | Rice University

nachricht Fraunhofer IMWS tests environmentally friendly microplastic alternatives in cosmetic products
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>