Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Creating Shape-Shifting Material Geared For Correcting Facial Defects

06.10.2014

A newly developed material that molds itself to fill gaps in bone while promoting bone growth could more effectively treat defects in the facial region, says a Texas A&M University researcher who is creating the shape-shifting material.

The research by Melissa Grunlan, associate professor in the university’s Department of Biomedical Engineering, is detailed in the scientific journal “Acta Biomaterialia.” Working with colleagues at Texas A&M and Rensselaer Polytechnic Institute, Grunlan has created a polymer foam that is malleable after treating with warm saline, allowing it to precisely fill a bone defect before hardening into a porous, sponge-like scaffold that promotes new bone formation.


Texas A&M University

The polymer foam scaffold has interconnected pores that allow bone cells to migrate into the area and begin healing damaged tissue.

The team envisions the material as a treatment for cranio-maxillofacial bone defects – gaps in bone occurring in the head, face or jaw areas. These defects, which can dramatically alter a person’s appearance, can be caused by injuries, birth defects such as cleft palates or surgical procedures such as the removal of tumors, Grunlan says.

In order to repair these defects, the polymer foam developed by Grunlan her team acts as a scaffold, a temporary structure that supports the damaged area while promoting healing by allowing bone cells to migrate into the area and repair the damage tissue. Ultimately, the scaffold dissolves, leaving behind new bone tissue, she explains.

“Try as hard as we do to create artificial materials to replace damaged or diseased tissues, it is nearly impossible to match the properties of native, healthy tissue – and so the whole idea behind tissue engineering is that if we can restore native-like, healthy tissue, that will be better than any artificial replacement,” Grunlan said.

“A problem,” she adds, “is directing that process in these areas where there is a critical bone defect. In these types of instances where large gaps exist the body doesn’t have the ability to heal the defect with new bone tissue growth; we have to help it along, and that is what our material is designed to do.”

Key to Grunlan’s material is its malleability after brief exposure to warm saline (140 degrees Fahrenheit), allowing surgeons to easily mold the material to fill irregularly shaped gaps in bone. Once a defect is filled, the material cools to body temperature and resumes its stiff texture, locking itself in place, she says.

This self-fitting aspect of the material gives it a significant edge over autografting, the most common treatment for these types of bone defects, Grunlan notes. Autografting involves harvesting bone from elsewhere in the body, such as the hip, and then arduously shaping it to fit the bone defect.

In addition to its obvious limited availability, the bone harvested through autografting is very rigid, making it difficult to shape and resulting in a lack of contact between the graft and the surrounding tissue, Grunlan says. When this occurs, complications can arise. For example, a graft can inadvertently dissolve through a process known as graft resorption, leaving behind the defect, she says.

Another therapy involves filling the defect with bone putty, but that material can be brittle once it hardens, and it lacks the pores necessary for bone cells to move into the area and repair the tissue, Grunlan notes.

By tweaking the polymer scaffold through a chemical process that bonds individual molecular chains, Grunlan and her team overcame that issue and produced a sponge-like material with interconnected pores.

They also coated the material with a bioactive substance that helps lock it into place by inducing formation of a mineral that is found in bone, she adds. The coating, Grunlan explains, help osteoblasts – the cells that produce bone – to adhere and spread throughout the polymer scaffold. Think of it as a sort of “boost” to the material’s healing properties.

Thus far, the results have been promising; after only three days the coated material had grown about five times more osteoblasts than uncoated versions of the same material, Grunlan says. In addition, the osteoblasts present within the scaffold produced more of the proteins critical for new bone formation. The team plans to continue studying the material’s ability to heal cranio-maxillofacial bone defects by moving testing into preclinical and clinical studies.

Media contact: Melissa Grunlan, associate professor in the Department of Biomedical Engineering, at (979) 845-2406 or via email: mgrunlan@tamu.edu, or Ryan A. Garcia at (979) 847-5833 or via email: ryan.garcia99@tamu.edu.

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Melissa Grunlan | newswise
Further information:
http://www.tamu.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>