Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Creating Shape-Shifting Material Geared For Correcting Facial Defects

06.10.2014

A newly developed material that molds itself to fill gaps in bone while promoting bone growth could more effectively treat defects in the facial region, says a Texas A&M University researcher who is creating the shape-shifting material.

The research by Melissa Grunlan, associate professor in the university’s Department of Biomedical Engineering, is detailed in the scientific journal “Acta Biomaterialia.” Working with colleagues at Texas A&M and Rensselaer Polytechnic Institute, Grunlan has created a polymer foam that is malleable after treating with warm saline, allowing it to precisely fill a bone defect before hardening into a porous, sponge-like scaffold that promotes new bone formation.


Texas A&M University

The polymer foam scaffold has interconnected pores that allow bone cells to migrate into the area and begin healing damaged tissue.

The team envisions the material as a treatment for cranio-maxillofacial bone defects – gaps in bone occurring in the head, face or jaw areas. These defects, which can dramatically alter a person’s appearance, can be caused by injuries, birth defects such as cleft palates or surgical procedures such as the removal of tumors, Grunlan says.

In order to repair these defects, the polymer foam developed by Grunlan her team acts as a scaffold, a temporary structure that supports the damaged area while promoting healing by allowing bone cells to migrate into the area and repair the damage tissue. Ultimately, the scaffold dissolves, leaving behind new bone tissue, she explains.

“Try as hard as we do to create artificial materials to replace damaged or diseased tissues, it is nearly impossible to match the properties of native, healthy tissue – and so the whole idea behind tissue engineering is that if we can restore native-like, healthy tissue, that will be better than any artificial replacement,” Grunlan said.

“A problem,” she adds, “is directing that process in these areas where there is a critical bone defect. In these types of instances where large gaps exist the body doesn’t have the ability to heal the defect with new bone tissue growth; we have to help it along, and that is what our material is designed to do.”

Key to Grunlan’s material is its malleability after brief exposure to warm saline (140 degrees Fahrenheit), allowing surgeons to easily mold the material to fill irregularly shaped gaps in bone. Once a defect is filled, the material cools to body temperature and resumes its stiff texture, locking itself in place, she says.

This self-fitting aspect of the material gives it a significant edge over autografting, the most common treatment for these types of bone defects, Grunlan notes. Autografting involves harvesting bone from elsewhere in the body, such as the hip, and then arduously shaping it to fit the bone defect.

In addition to its obvious limited availability, the bone harvested through autografting is very rigid, making it difficult to shape and resulting in a lack of contact between the graft and the surrounding tissue, Grunlan says. When this occurs, complications can arise. For example, a graft can inadvertently dissolve through a process known as graft resorption, leaving behind the defect, she says.

Another therapy involves filling the defect with bone putty, but that material can be brittle once it hardens, and it lacks the pores necessary for bone cells to move into the area and repair the tissue, Grunlan notes.

By tweaking the polymer scaffold through a chemical process that bonds individual molecular chains, Grunlan and her team overcame that issue and produced a sponge-like material with interconnected pores.

They also coated the material with a bioactive substance that helps lock it into place by inducing formation of a mineral that is found in bone, she adds. The coating, Grunlan explains, help osteoblasts – the cells that produce bone – to adhere and spread throughout the polymer scaffold. Think of it as a sort of “boost” to the material’s healing properties.

Thus far, the results have been promising; after only three days the coated material had grown about five times more osteoblasts than uncoated versions of the same material, Grunlan says. In addition, the osteoblasts present within the scaffold produced more of the proteins critical for new bone formation. The team plans to continue studying the material’s ability to heal cranio-maxillofacial bone defects by moving testing into preclinical and clinical studies.

Media contact: Melissa Grunlan, associate professor in the Department of Biomedical Engineering, at (979) 845-2406 or via email: mgrunlan@tamu.edu, or Ryan A. Garcia at (979) 847-5833 or via email: ryan.garcia99@tamu.edu.

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Melissa Grunlan | newswise
Further information:
http://www.tamu.edu

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>