Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Creating Shape-Shifting Material Geared For Correcting Facial Defects

06.10.2014

A newly developed material that molds itself to fill gaps in bone while promoting bone growth could more effectively treat defects in the facial region, says a Texas A&M University researcher who is creating the shape-shifting material.

The research by Melissa Grunlan, associate professor in the university’s Department of Biomedical Engineering, is detailed in the scientific journal “Acta Biomaterialia.” Working with colleagues at Texas A&M and Rensselaer Polytechnic Institute, Grunlan has created a polymer foam that is malleable after treating with warm saline, allowing it to precisely fill a bone defect before hardening into a porous, sponge-like scaffold that promotes new bone formation.


Texas A&M University

The polymer foam scaffold has interconnected pores that allow bone cells to migrate into the area and begin healing damaged tissue.

The team envisions the material as a treatment for cranio-maxillofacial bone defects – gaps in bone occurring in the head, face or jaw areas. These defects, which can dramatically alter a person’s appearance, can be caused by injuries, birth defects such as cleft palates or surgical procedures such as the removal of tumors, Grunlan says.

In order to repair these defects, the polymer foam developed by Grunlan her team acts as a scaffold, a temporary structure that supports the damaged area while promoting healing by allowing bone cells to migrate into the area and repair the damage tissue. Ultimately, the scaffold dissolves, leaving behind new bone tissue, she explains.

“Try as hard as we do to create artificial materials to replace damaged or diseased tissues, it is nearly impossible to match the properties of native, healthy tissue – and so the whole idea behind tissue engineering is that if we can restore native-like, healthy tissue, that will be better than any artificial replacement,” Grunlan said.

“A problem,” she adds, “is directing that process in these areas where there is a critical bone defect. In these types of instances where large gaps exist the body doesn’t have the ability to heal the defect with new bone tissue growth; we have to help it along, and that is what our material is designed to do.”

Key to Grunlan’s material is its malleability after brief exposure to warm saline (140 degrees Fahrenheit), allowing surgeons to easily mold the material to fill irregularly shaped gaps in bone. Once a defect is filled, the material cools to body temperature and resumes its stiff texture, locking itself in place, she says.

This self-fitting aspect of the material gives it a significant edge over autografting, the most common treatment for these types of bone defects, Grunlan notes. Autografting involves harvesting bone from elsewhere in the body, such as the hip, and then arduously shaping it to fit the bone defect.

In addition to its obvious limited availability, the bone harvested through autografting is very rigid, making it difficult to shape and resulting in a lack of contact between the graft and the surrounding tissue, Grunlan says. When this occurs, complications can arise. For example, a graft can inadvertently dissolve through a process known as graft resorption, leaving behind the defect, she says.

Another therapy involves filling the defect with bone putty, but that material can be brittle once it hardens, and it lacks the pores necessary for bone cells to move into the area and repair the tissue, Grunlan notes.

By tweaking the polymer scaffold through a chemical process that bonds individual molecular chains, Grunlan and her team overcame that issue and produced a sponge-like material with interconnected pores.

They also coated the material with a bioactive substance that helps lock it into place by inducing formation of a mineral that is found in bone, she adds. The coating, Grunlan explains, help osteoblasts – the cells that produce bone – to adhere and spread throughout the polymer scaffold. Think of it as a sort of “boost” to the material’s healing properties.

Thus far, the results have been promising; after only three days the coated material had grown about five times more osteoblasts than uncoated versions of the same material, Grunlan says. In addition, the osteoblasts present within the scaffold produced more of the proteins critical for new bone formation. The team plans to continue studying the material’s ability to heal cranio-maxillofacial bone defects by moving testing into preclinical and clinical studies.

Media contact: Melissa Grunlan, associate professor in the Department of Biomedical Engineering, at (979) 845-2406 or via email: mgrunlan@tamu.edu, or Ryan A. Garcia at (979) 847-5833 or via email: ryan.garcia99@tamu.edu.

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Melissa Grunlan | newswise
Further information:
http://www.tamu.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>