Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Graphene Nanopores Can Be Controlled

04.10.2012
Less Costly Ways of Sequencing DNA Could Open New Possibilities for Disease Prevention

Engineers at The University of Texas at Dallas have used advanced techniques to make the material graphene small enough to read DNA.


These are transmission electron microscope images of a nanopore in graphene. The original pore on the left grows considerably under the influence of the electron beam. The image on the right is the pore after four minutes at 800 °C. Pores either shrink or grow depending on the temperature and electron beam irradiation.

Shrinking the size of a graphene pore to less than one nanometer – small enough to thread a DNA strand – opens the possibility of using graphene as a low-cost tool to sequence DNA.

“Sequencing DNA at a very cheap cost would enable scientists and doctors to better predict and diagnose disease, and also tailor a drug to an individual’s genetic code,” said Dr. Moon Kim, professor of materials science and engineering. He was senior author of an article depicted on the cover of the September print edition of Carbon.

... more about:
»DNA »DNA strand »carbon atom »graphene »nanopores

The first reading, or sequencing, of human DNA by the international scientific research group known as the Human Genome Project cost about $2.7 billion. Engineers have been researching alternative nanomaterials materials that can thread DNA strands to reduce the cost to less than $1,000 per person.

It was demonstrated in 2004 that graphite could be changed into a sheet of bonded carbon atoms called graphene, which is believed to be the strongest material ever measured. Because graphene is thin and strong, researchers have searched for ways to control its pore size. They have not had much success. A nanoscale sensor made of graphene could be integrated with existing silicon-based electronics that are very advanced and yet cheap, to reduce costs.

In this study, Kim and his team manipulated the size of the nanopore by using an electron beam from an advanced electron microscope and in-situ heating up to 1200 degree Celsius temperature.

“This is the first time that the size of the graphene nanopore has been controlled, especially shrinking it,” said Kim. “We used high temperature heating and electron beam simultaneously, one technique without the other doesn’t work.”

Now that researchers know the pore size can be controlled, the next step in their research will be to build a prototype device.

“If we could sequence DNA cheaply, the possibilities for disease prevention, diagnosis and treatment would be limitless,” Kim said. “Controlling graphene puts us one step closer to making this happen.”

Other UT Dallas researchers from the Erik Jonsson School of Engineering and Computer Science involved in this project are Dr. Ning Lu, research scientist in materials science and engineering; Dr. Jinguo Wang, associate EM Facility Director; and Dr. Herman Carlo Floresca, postdoctoral research fellow in materials science and engineering.

The study was funded by the Southwest Academy of Nanoelectronics, Air Force Office of Scientific Research and the World Class University Program.

Media Contact: LaKisha Ladson, UT Dallas, (972) 883-4183, lakisha.ladson@utdallas.edu

or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

LaKisha Ladson | EurekAlert!
Further information:
http://www.UTDallas.edu

Further reports about: DNA DNA strand carbon atom graphene nanopores

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>