Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Improves Dry Lubricant Used in Machinery and Biomedical Devices

22.05.2013
Silica nanoparticles help reduce wear and friction

Nearly everyone is familiar with the polytetrafluoroethylene (PTFE), otherwise known as Teflon, the brand name used by the chemical company DuPont. Famous for being “non-sticky” and water repellent, PTFE is a dry lubricant used on machine components everywhere, from kitchen tools and engine cylinders to space and biomedical applications.

Recently, engineering researchers at the University of Arkansas found a way to make the polymer even less adhesive. They treated thin films of PTFD with silica nanoparticles and found that the lubricating material significantly reduced wear of the polymer while maintaining a low level of friction. The researchers’ work will enable machinery to last longer and operate more efficiently.

“Polytetrafluoroethylene is a big, scary word,” said. Min Zou, an associate professor of mechanical engineering. “What we’re talking about here is a material layer or coating – a film – that essentially does not stick and is hydrophobic, meaning it repels water.”

Solid lubricants such as PTFE are appealing because they perform well in high temperatures, have low maintenance costs and are clean compared to liquids. They are essential in an industrial setting, where the surfaces of various mechanical parts are constantly coming into contact with each other.

PTFE compares favorably to other solid lubricant materials because of its self-lubricating properties, its ability to produce low friction and its resistance to high temperatures and chemicals. It has been used as a lubrication polymer for many years, and recently scientists and engineers have attempted to improve the material by incorporating nanoparticle “fillers” that reduce wear on the material and thus extend its life. However, high concentrations of these nano-fillers have created a problem: while reducing wear, they have also increased the material’s ability to create friction.

“A great obstacle in micro- and nanocomposite films has been the inability to find a filler material that provides good wear resistance as well as a low coefficient of friction,” Zou said.

But that’s exactly what Zou found in silica. After integrating the nanoparticle material into PTFE in two different concentrations, she and her graduate student Samuel Beckford applied the thin films to a stainless steel substrate. They subjected the films to abrasive tests to measure the degree of friction and wear resistance. For comparison, they did the same experiments on a pure PTFE film and on bare stainless steel. Andrew Wang with Ocean NanoTech, a local technology firm, helped with size characterization of the nanoparticles.

“Micrographs revealed that the composite films with higher concentration of silica had much narrower wear tracks after the samples were subjected to rubbing tests,” Zou said.

The study was published in Tribology Transactions, a journal of the Society of Tribologists and Lubrication Engineers (STLE), and received the STLE Al Sonntag Award for the best paper published on solid lubricants.

Zou is holder of the 21st Century Professorship in Mechanical Engineering.

CONTACTS:
Min Zou, associate professor, mechanical engineering
College of Engineering
479-575-6671, mzou@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu
Follow University of Arkansas research on Twitter @UArkResearch

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>