Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Improves Dry Lubricant Used in Machinery and Biomedical Devices

22.05.2013
Silica nanoparticles help reduce wear and friction

Nearly everyone is familiar with the polytetrafluoroethylene (PTFE), otherwise known as Teflon, the brand name used by the chemical company DuPont. Famous for being “non-sticky” and water repellent, PTFE is a dry lubricant used on machine components everywhere, from kitchen tools and engine cylinders to space and biomedical applications.

Recently, engineering researchers at the University of Arkansas found a way to make the polymer even less adhesive. They treated thin films of PTFD with silica nanoparticles and found that the lubricating material significantly reduced wear of the polymer while maintaining a low level of friction. The researchers’ work will enable machinery to last longer and operate more efficiently.

“Polytetrafluoroethylene is a big, scary word,” said. Min Zou, an associate professor of mechanical engineering. “What we’re talking about here is a material layer or coating – a film – that essentially does not stick and is hydrophobic, meaning it repels water.”

Solid lubricants such as PTFE are appealing because they perform well in high temperatures, have low maintenance costs and are clean compared to liquids. They are essential in an industrial setting, where the surfaces of various mechanical parts are constantly coming into contact with each other.

PTFE compares favorably to other solid lubricant materials because of its self-lubricating properties, its ability to produce low friction and its resistance to high temperatures and chemicals. It has been used as a lubrication polymer for many years, and recently scientists and engineers have attempted to improve the material by incorporating nanoparticle “fillers” that reduce wear on the material and thus extend its life. However, high concentrations of these nano-fillers have created a problem: while reducing wear, they have also increased the material’s ability to create friction.

“A great obstacle in micro- and nanocomposite films has been the inability to find a filler material that provides good wear resistance as well as a low coefficient of friction,” Zou said.

But that’s exactly what Zou found in silica. After integrating the nanoparticle material into PTFE in two different concentrations, she and her graduate student Samuel Beckford applied the thin films to a stainless steel substrate. They subjected the films to abrasive tests to measure the degree of friction and wear resistance. For comparison, they did the same experiments on a pure PTFE film and on bare stainless steel. Andrew Wang with Ocean NanoTech, a local technology firm, helped with size characterization of the nanoparticles.

“Micrographs revealed that the composite films with higher concentration of silica had much narrower wear tracks after the samples were subjected to rubbing tests,” Zou said.

The study was published in Tribology Transactions, a journal of the Society of Tribologists and Lubrication Engineers (STLE), and received the STLE Al Sonntag Award for the best paper published on solid lubricants.

Zou is holder of the 21st Century Professorship in Mechanical Engineering.

CONTACTS:
Min Zou, associate professor, mechanical engineering
College of Engineering
479-575-6671, mzou@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu
Follow University of Arkansas research on Twitter @UArkResearch

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>