Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report Identifies Materials Technologies That Address Critical Energy and Economic Challenges

08.02.2011
A year of study and debate has surfaced a select list of materials-driven product and processing technologies with strong, near-term potential as “game-changers” for energy efficiency, use, access, and business opportunity.

They are presented in Linking Transformational Materials and Processing for an Energy Efficient and Low-Carbon Economy: Creating the Vision and Accelerating Realization: Opportunity Analysis for Materials Science and Engineering, released today by The Minerals Metals & Materials Society (TMS).

The report concludes the second phase of a study commissioned by the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP) and funded through Oak Ridge National Laboratory. The study’s findings will be used to formulate a core materials science and engineering (MSE) development portfolio focused on meeting current and future energy challenges, while also opening opportunities for job creation and economic growth.

“The engagement of the MSE community in this work has been a vital component in producing these outputs,” said Warren Hunt, Jr., TMS executive director. “It has been a wonderful example of collaborative excellence and TMS is very pleased to have been able to facilitate the process focused on this important area for the United States and the world.”

The process began in February 2010 when TMS convened the Energy Materials Blue Ribbon Panel, consisting of 21 MSE thought leaders, that was charged with laying the groundwork for a focused evaluation of the highest value opportunities for materials and processing innovation. They met the challenge by producing a “Vision Report” in June 2010 that distilled their findings into four cross-cutting MSE themes: Functional Surface Technology; Higher-Performance Materials for Extreme Environments; Multi-Materials Integration in Energy Systems; and Sustainable Manufacturing of Materials.

Phase II of the project was initiated in September 2010, when Technical Working Groups (TWGs) for each of the MSE themes were assembled to build on the Panel’s broad recommendations by identifying approaches to propel the most promising technologies from the research laboratory into application at scale. Their work encompassed building consensus around key application areas, prioritizing limitations and gaps in materials technologies, providing some quantification of energy and carbon reduction benefits, and offering a preliminary review of research and development needs. The Opportunity Analysis for Materials Science and Engineering summarizes the outcomes of this process.

The bulk of the report is devoted to outlining the prioritized sets of new product and manufacturing process opportunities from each of the four TWGs. A key outcome, however, is the development of a more finely honed list of product and process innovation priorities that crosscut multiple MSE themes and represent the consensus of the TWG participants on the greatest opportunities for performance breakthroughs or radical cost reductions in selected energy application areas. These highest priority innovation areas include:

1) Next-Generation Battery and Fuel Cell Materials and Concepts

Transformational battery technologies for transportation and stationary electrical energy storage will only come about with the development of lower cost materials that are amenable to large scale processing, offer improved performance, and ensure low environmental impact.

2) Breakthrough Thermoelectric Materials

Thermoelectric materials with greatly enhanced conversion efficiency would lead to significant advances in the efficient conversion of waste heat into useful electricity.

3) Next-Generation Structural Metals for Extreme Environments

Structural alloys with greater stability in adverse environments are an important family of product developments that would result in markedly enhanced performance in a number of energy application areas.

4) Catalysts for Fuels and Energy Intensive Processes

Catalysts with higher selectivity and conversion efficiency can improve industrial efficiency and ensure that hydrogen fuel, solar, and carbon management applications are practical. Reducing operating temperatures in chemical production processes would also save significant amounts of energy and associated carbon emissions. In addition, replacement or extension of noble metals used in catalysts with non-noble metals will make resulting products more cost effective.

5) New Paradigm Manufacturing Processes for Metallic and Nonmetallic Materials and Their Composites

By drastically reducing the cost of processing lightweight metal and non-metallic materials and their composites into final products, these high-performing materials can capture far greater use in transportation and manufacturing applications.

6) Surface Treatment Processes for Product Performance and Life Extension

New repair and remanufacturing processes are needed for advanced materials and alloys used in applications designed to enhance energy efficiency and shrink the carbon footprint. Promising techniques include new surface treatment processes that utilize a diffusion process, as well as self-healing materials and “smart” materials with the ability to detect damage.

Integrated computational materials engineering (ICME) was also indentified by the TWGs as a critical cross-cutting tool that can accelerate and enhance the probability of successful development and commercial implementation of the priority product and process innovations.

While the report notes that projects and programs can be immediately structured around the opportunities that the TWGs have identified, it also cautions that specific performance goals and research and development pathways need to be more clearly delineated as a next phase in this process in order to realize the maximum impact of these technologies.

The report further advances a key priority of the DOE/ITP: moving strategic breakthroughs in critical manufacturing and materials technologies from theoretical design to practical application. The DOE views the Opportunity Analysis for Materials Science and Engineering report as a blueprint for action that can speed the nation's progress toward a more energy efficient and low-carbon society while transforming its energy sector.

Download the Full Report and Background Information
The complete report, as well as a summary article and additional background information on the project, can be accessed on the project home page of the TMS Energy website at http://energy.tms.org/initiatives/LTMP.aspx. General information on TMS and high resolution images related to the reports are available in the TMS Energy Press Room at http://energy.tms.org/pressroom.aspx.
About TMS
TMS is a member-driven international professional society dedicated to fostering the exchange of learning and ideas across the entire range of materials science and engineering, from minerals processing and primary metals production, to basic research and the advanced applications of materials. Of particular interest to TMS and its members through its history has been the role of MSE in addressing both short- and long-term energy challenges. Recently, in response to the needs of both society and the MSE professionals it serves, TMS has committed to an even sharper, more strategic focus on materials-enabled energy technology—TMS Energy. The goals of TMS Energy are to provide leadership, facilitation, and resources that generate and support effective energy solutions based on the innovative development and use of materials. The Linking Transformational Materials and Processing for an Energy Efficient and Low-Carbon Economy project is one such effort of the TMS Energy initiative. Additional information on TMS Energy can be found at http://energy.tms.org.

Patti Dobranski | Newswise Science News
Further information:
http://www.tms.org

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>