Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dude, big screen TVs, flexible electronics and surfboards made from same new material!

23.11.2007
Producing controlled-grid patterns of nanotube arrays for strengthening polymer composites

There is nothing new about combining two materials to make a composite material with more desirable properties than the originals. Fibreglass has been a mainstay of the marine industry for decades and the construction industry is built on reinforced concrete.

Now carbon nanotubes (CNT) are getting in on the act with nanotechnologists working out how to grow nanotube reinforcements for polymers in an ideal manner.

Researchers from Trinity College have developed a scalable inexpensive technique to grow grid patterns of nanotube arrays. To maximise the effect of CNT reinforcement on a polymer thin film, while minimizing nanotube content, a controllable way of varying the volume fraction of CNTs within the composite is needed. In order to do this, the inter-grid spacing can be tailored as required giving a simple method of controlling the volume fraction of nanotubes grown on substrates.

The research work by Werner J. Blau, Dr. Emer Lahiff, Andrew I. Minett and Dr. Kentaro Nakajima is expected to lead to incorporation of CNTs in polymer matrices within flat panel displays, sensors, flexible electronic devices and actuators.

The study has been published in a special edition of the open access journal, AZoJono. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The article is available to view in full at http://www.azonano.com/Details.asp?ArticleID=2040

Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azonano.com/Details.asp?ArticleID=2040

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>