Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another type of nanotube, a how-to guide to making bamboo-structured carbon nanotubes

23.11.2007
Synthesis of bamboo-structured carbon nanotubes on MgO supported bimetallic Cu-Mo catalysts

Nanotechnology is area if science that has recently captured the attention of people all around the world. At the heart of the nanotechnology revolution are carbon nanotubes, amazing materials with astonishing properties. They have applications in most fields, with new possibilities emerging regularly.

Carbon nanotubes are not as straightforward as many believe them to be. Of course there are the simple single walled carbon nanotubes and the more complex multi walled carbon nanotubes, but there are also carbon nanotubes in a number of other forms. By altering reaction conditions, carbon nanotubes also exist as carbon cages, carbon nanohorns and carbon nanotubes with a structure reminiscent of bamboo.

Research work has just been released that provides a detailed analysis of the procedure for synthesising bamboo structured carbon nanotubes (BCNTs). The work by Zhonglai Li, Hongzhe Zhang, Joe Tobin, Michael A. Morris, Jieshan Qiu, Gary Attard and Justin D. Holmes from University College Cork, Dalian University of Technology and Cardiff University has been published in a special edition of the open access journal, AZoJono*.

This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The present work looked at bamboo-structured carbon nanotubes with a narrow diameter distribution synthesized on bimetallic copper-molybdenum catalysts. Findings included the catalytic nanoparticles playing a key role in the synthesis of the nanotubes as well as acting as nucleation seeds for growth. Raman and thermal gravimetric analysis results showed that the quality of the BCNTs was dependent on the amount of copper present in the catalyst. These results challenge accepted wisdom that significant yields of CNTs can only be formed from catalytic CVD routes if first row or mid-row transition elements are used as catalysts.

The article is available to view in its entirety on AZoJono at http://www.azonano.com/Details.asp?ArticleID=2037

Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azonano.com/Details.asp?ArticleID=2037

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>