Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FED-TVs with carbon nanotube technology could supersede plasma and LCD flat screens

22.11.2007
Conductive and field emission properties of single and multi-walled carbon nanotubes

Just as silicon is the wonder material for the computer age, carbon nanotubes will most likely be the materials responsible for the next evolutionary step in electronics and computing. Their extraordinary properties have identified them as having the potential to revolutionise many technologies.

In particular, it is widely believed that carbon nanotubes will take electronic devices to the next level. Many people expect the hugely popular LCD and plasma screens of today to be replaced by field emission flat screen displays (FED-TV). FED-TV’s take all the best aspects of CRT’s, LCD’s and plasma TV’s and roll them into a single package. While the technology exists, manufacturers are at present unable to compete with LCD’s and plasma displays on a cost basis. However, carbon nanotubes have the ability to change all that.

In order to incorporate carbon nanotubes into devices like these field emission flat screen displays, an intimate knowledge of the properties of various forms of carbon nanotubes is invaluable. Researchers from University of Latvia, University College Cork, Trinity College Dublin, University of London and Mid Sweden University have just published work characterizing the conductive and field emission properties of single and multi walled carbon nanotubes.

The work by Jana Andzane, Joseph M. Tobin, Zhonglai Li, Juris Prikulis, Mark Baxendale, Håkan Olin, Justin D. Holmes and Donats Erts has been published in a special edition of the open access journal, AZoJono* and is available in its entirety at http://www.azonano.com/Details.asp?ArticleID=2038. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

In their work, the conductive and field emission properties of individual single and multi-walled carbon nanotubes were assessed using an in-situ transmission electron microscope-scanning tunnelling microscope (TEM-STM) technique. The nanotubes were grown by chemical vapour and supercritical fluid deposition techniques. Experimental field emission characteristics for all carbon nanotubes investigated fitted well to the Fowler-Nordheim equation when different work functions were applied. Differences in field emission and conductive properties are analysed and related to the structure of the carbon nanotubes. The method presented can be applied in order to make in situ selection of carbon nanotubes with desired properties for specific electronic applications.

The researchers found that conductivity and field emission properties were nanotube structure dependent. The structure of the outer layers and whether or not the nanotubes were filled with C60 molecules were key factors in determining the properties of the carbon nanotubes.

hese findings make a significant contribution to the understanding of the structure/property relationships for carbon nanotubes, which in turn bring the next generation flat panel televisions and monitors a bit closer to our lounge rooms and offices.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azonano.com/journal_of_nanotechnology.asp

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>