Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FED-TVs with carbon nanotube technology could supersede plasma and LCD flat screens

22.11.2007
Conductive and field emission properties of single and multi-walled carbon nanotubes

Just as silicon is the wonder material for the computer age, carbon nanotubes will most likely be the materials responsible for the next evolutionary step in electronics and computing. Their extraordinary properties have identified them as having the potential to revolutionise many technologies.

In particular, it is widely believed that carbon nanotubes will take electronic devices to the next level. Many people expect the hugely popular LCD and plasma screens of today to be replaced by field emission flat screen displays (FED-TV). FED-TV’s take all the best aspects of CRT’s, LCD’s and plasma TV’s and roll them into a single package. While the technology exists, manufacturers are at present unable to compete with LCD’s and plasma displays on a cost basis. However, carbon nanotubes have the ability to change all that.

In order to incorporate carbon nanotubes into devices like these field emission flat screen displays, an intimate knowledge of the properties of various forms of carbon nanotubes is invaluable. Researchers from University of Latvia, University College Cork, Trinity College Dublin, University of London and Mid Sweden University have just published work characterizing the conductive and field emission properties of single and multi walled carbon nanotubes.

The work by Jana Andzane, Joseph M. Tobin, Zhonglai Li, Juris Prikulis, Mark Baxendale, Håkan Olin, Justin D. Holmes and Donats Erts has been published in a special edition of the open access journal, AZoJono* and is available in its entirety at http://www.azonano.com/Details.asp?ArticleID=2038. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

In their work, the conductive and field emission properties of individual single and multi-walled carbon nanotubes were assessed using an in-situ transmission electron microscope-scanning tunnelling microscope (TEM-STM) technique. The nanotubes were grown by chemical vapour and supercritical fluid deposition techniques. Experimental field emission characteristics for all carbon nanotubes investigated fitted well to the Fowler-Nordheim equation when different work functions were applied. Differences in field emission and conductive properties are analysed and related to the structure of the carbon nanotubes. The method presented can be applied in order to make in situ selection of carbon nanotubes with desired properties for specific electronic applications.

The researchers found that conductivity and field emission properties were nanotube structure dependent. The structure of the outer layers and whether or not the nanotubes were filled with C60 molecules were key factors in determining the properties of the carbon nanotubes.

hese findings make a significant contribution to the understanding of the structure/property relationships for carbon nanotubes, which in turn bring the next generation flat panel televisions and monitors a bit closer to our lounge rooms and offices.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azonano.com/journal_of_nanotechnology.asp

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>