Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


FED-TVs with carbon nanotube technology could supersede plasma and LCD flat screens

Conductive and field emission properties of single and multi-walled carbon nanotubes

Just as silicon is the wonder material for the computer age, carbon nanotubes will most likely be the materials responsible for the next evolutionary step in electronics and computing. Their extraordinary properties have identified them as having the potential to revolutionise many technologies.

In particular, it is widely believed that carbon nanotubes will take electronic devices to the next level. Many people expect the hugely popular LCD and plasma screens of today to be replaced by field emission flat screen displays (FED-TV). FED-TV’s take all the best aspects of CRT’s, LCD’s and plasma TV’s and roll them into a single package. While the technology exists, manufacturers are at present unable to compete with LCD’s and plasma displays on a cost basis. However, carbon nanotubes have the ability to change all that.

In order to incorporate carbon nanotubes into devices like these field emission flat screen displays, an intimate knowledge of the properties of various forms of carbon nanotubes is invaluable. Researchers from University of Latvia, University College Cork, Trinity College Dublin, University of London and Mid Sweden University have just published work characterizing the conductive and field emission properties of single and multi walled carbon nanotubes.

The work by Jana Andzane, Joseph M. Tobin, Zhonglai Li, Juris Prikulis, Mark Baxendale, Håkan Olin, Justin D. Holmes and Donats Erts has been published in a special edition of the open access journal, AZoJono* and is available in its entirety at This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

In their work, the conductive and field emission properties of individual single and multi-walled carbon nanotubes were assessed using an in-situ transmission electron microscope-scanning tunnelling microscope (TEM-STM) technique. The nanotubes were grown by chemical vapour and supercritical fluid deposition techniques. Experimental field emission characteristics for all carbon nanotubes investigated fitted well to the Fowler-Nordheim equation when different work functions were applied. Differences in field emission and conductive properties are analysed and related to the structure of the carbon nanotubes. The method presented can be applied in order to make in situ selection of carbon nanotubes with desired properties for specific electronic applications.

The researchers found that conductivity and field emission properties were nanotube structure dependent. The structure of the outer layers and whether or not the nanotubes were filled with C60 molecules were key factors in determining the properties of the carbon nanotubes.

hese findings make a significant contribution to the understanding of the structure/property relationships for carbon nanotubes, which in turn bring the next generation flat panel televisions and monitors a bit closer to our lounge rooms and offices.

Dr. Ian Birkby | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>