Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Record-Breaking Hydrogen Storage Materials for Use in Fuel Cells

14.11.2007
Scientists at the University of Virginia have discovered a new class of hydrogen storage materials that could make the storage and transportation of energy much more efficient — and affordable — through higher-performing hydrogen fuel cells.

Bellave S. Shivaram and Adam B. Phillips, the U.Va. physicists who invented the new materials, will present their finding at 8 p.m., Monday, Nov. 12, at the International Symposium on Materials Issues in a Hydrogen Economy at the Omni Hotel in Richmond, Va.

“In terms of hydrogen absorption, these materials could prove a world record,” Phillips said. “Most materials today absorb only 7 to 8 percent of hydrogen by weight, and only at cryogenic [extremely low] temperatures. Our materials absorb hydrogen up to 14 percent by weight at room temperature. By absorbing twice as much hydrogen, the new materials could help make the dream of a hydrogen economy come true.”

In the quest for alternative fuels, U.Va.’s new materials potentially could provide a highly affordable solution to energy storage and transportation problems with a wide variety of applications. They absorb a much higher percentage of hydrogen than predecessor materials while exhibiting faster kinetics at room temperature and much lower pressures, and are inexpensive and simple to produce.

“These materials are the next generation in hydrogen fuel storage materials, unlike any others we have seen before,” Shivaram said. “They have passed every litmus test that we have performed, and we believe they have the potential to have a large impact.”

The inventors believe the novel materials will translate to the marketplace and are working with the U.Va. Patent Foundation to patent their discovery.

“The U.Va. Patent Foundation is very excited to be working with a material that one day may be used by millions in everyday life,” said Chris Harris, senior licensing manager for the U.Va. Patent Foundation. “Dr. Phillips and Dr. Shivaram have made an incredible breakthrough in the area of hydrogen absorption.”

Phillips’s and Shivaram’s research was supported by the National Science Foundation and the U.S. Department of Energy.

About the University of Virginia Patent Foundation

The University of Virginia Patent Foundation is a not-for-profit corporation that serves to promote the translation of U.Va. technologies to the global marketplace by evaluating, protecting and licensing intellectual property generated in the course of research at U.Va. The Patent Foundation reviews and evaluates over 150 inventions per year and has generated more than $75 million in licensing revenue since its formation in 1978. For more information about the Patent Foundation, its services or technology transfer, visit www.uvapf.org.

Bellave Shivaram | EurekAlert!
Further information:
http://www.uvapf.org
http://www.virginia.edu

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>