Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Record-Breaking Hydrogen Storage Materials for Use in Fuel Cells

14.11.2007
Scientists at the University of Virginia have discovered a new class of hydrogen storage materials that could make the storage and transportation of energy much more efficient — and affordable — through higher-performing hydrogen fuel cells.

Bellave S. Shivaram and Adam B. Phillips, the U.Va. physicists who invented the new materials, will present their finding at 8 p.m., Monday, Nov. 12, at the International Symposium on Materials Issues in a Hydrogen Economy at the Omni Hotel in Richmond, Va.

“In terms of hydrogen absorption, these materials could prove a world record,” Phillips said. “Most materials today absorb only 7 to 8 percent of hydrogen by weight, and only at cryogenic [extremely low] temperatures. Our materials absorb hydrogen up to 14 percent by weight at room temperature. By absorbing twice as much hydrogen, the new materials could help make the dream of a hydrogen economy come true.”

In the quest for alternative fuels, U.Va.’s new materials potentially could provide a highly affordable solution to energy storage and transportation problems with a wide variety of applications. They absorb a much higher percentage of hydrogen than predecessor materials while exhibiting faster kinetics at room temperature and much lower pressures, and are inexpensive and simple to produce.

“These materials are the next generation in hydrogen fuel storage materials, unlike any others we have seen before,” Shivaram said. “They have passed every litmus test that we have performed, and we believe they have the potential to have a large impact.”

The inventors believe the novel materials will translate to the marketplace and are working with the U.Va. Patent Foundation to patent their discovery.

“The U.Va. Patent Foundation is very excited to be working with a material that one day may be used by millions in everyday life,” said Chris Harris, senior licensing manager for the U.Va. Patent Foundation. “Dr. Phillips and Dr. Shivaram have made an incredible breakthrough in the area of hydrogen absorption.”

Phillips’s and Shivaram’s research was supported by the National Science Foundation and the U.S. Department of Energy.

About the University of Virginia Patent Foundation

The University of Virginia Patent Foundation is a not-for-profit corporation that serves to promote the translation of U.Va. technologies to the global marketplace by evaluating, protecting and licensing intellectual property generated in the course of research at U.Va. The Patent Foundation reviews and evaluates over 150 inventions per year and has generated more than $75 million in licensing revenue since its formation in 1978. For more information about the Patent Foundation, its services or technology transfer, visit www.uvapf.org.

Bellave Shivaram | EurekAlert!
Further information:
http://www.uvapf.org
http://www.virginia.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>