Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A conductive plastic fights corrosion

05.11.2007
Corrosion is the process by which a material breaks down due to reactions with its surroundings, usually by means of oxidation.

It poses great problems to our society, making it the subject of investigation for many research groups, which dedicate great efforts to find means to prevent or control this process. The Universidad Autónoma de Madrid has tested a new protection technique that consists of the electrodeposition of a conductive polymer (polypyrrole) over the surface of a material like copper that is easily oxidised.

Copper is widely used for many applications and being a metal that oxidises relatively easily, its conservation represents a great economical benefit. Conventional methods to avoid or minimise corrosion of the material are in many cases short lived, very expensive and involve the use of toxic chemicals.

A recent article by Pilar Herrasti published in the Electrochimica Acta journal describes how copper has been successfully covered with a conductive polymer that creates a barrier with the corrosive environment while leaving the conductive property of the material untouched. Conductive polymers are remarkable materials - plastics with a slightly altered composition that make them capable of conducting electricity. Synthesising these polymers is not complicated and the process can be varied to increase or decrease their conductivity.

When an oxidising potential is applied to a pyrrole solution, it oxidises the compound over the electrode, and a thin film of the material is laid over the metal. In the case of copper, the methodology involves generating a layer of copper oxide over which the polymer is deposited. This layer is conductive like the metal and since it is deposited in an oxidised state it can then be reduced, maintaining the copper in the passivity zone (non corrosion zone), while simultaneously acting as a physical barrier between the copper and the environment. For its effect to be adequate on the material there are two fundamental conditions, the oxide-reductive potential must be high and there should be minimal porosity.

To achieve this goal, a detailed study of electrodeposition has been carried out, using different techniques, and adjusting the different parameters such as environmental composition and potentials or currents applied. The polymer deposited copper was then tested by submerging it in a solution of NaCl, simulating sea water, which is one of the most corrosive environments there are, since it contains large numbers of chloride ions.

These ions are responsible for an extremely localised form of corrosion that leads to the creation of small holes in the metal, known as pitting. The study of the behaviour of these materials had led to the conclusion that by tuning the different parameters, a thin film can be created that withstands the attack of this harsh environment for at least a month.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org
http://dx.doi.org/10.1016/j.electacta.2007.04.074

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>