Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic World

30.10.2007
We cannot imagine our modern society without plastics. Technically durable, complex products and construction units are increasingly manufactured from plastic.

Which plastic is right for what application and how technically safe these products and construction units manufactured from plastics are can only be answered using informative measurement and test methods. The Federal Institute for Materials Research and Testing (BAM) works on the development of methods which answer these questions. BAM presents its know-how in the field of plastics at the K 2007 fair from 24 to 31 October in Hall 4, Booth D14, in Düsseldorf.

BAM has developed highly realistic methods for simulating the degradation process of plastics in a few months using accelerated testing. For this purpose the plastics are exposed to aggressive media, e.g. diluted acids or bases, at elevated temperatures and increased pressures. So a realistic estimate for the expected life span of geosynthetics in the soil has to be provided using this method. Geosynthetics are one of a number of materials used for slope stabilisation or in road construction where the strength needed must be maintained over many decades. It is controlled by the chemical structure of the plastics which can be impaired or destroyed under the effect of water and oxygen in the soil.

An ultrasound method developed by BAM now enables the on-line monitoring and control of the hardening process of plastics which contain glass or carbon fibres. These strengthened plastics are increasingly being used because of their high mechanical load bearing capacity and their low weight in high-tech construction units in the aeronautical and space industry and in car manufacture. The construction units are produced from liquid resin at temperatures between 100 °C and 200 °C by a chemical reaction. At a given chemical composition the hardening process determines the chemical structure of the plastic. This affects strength and eventually the technical safety. Hardening time plays a crucial role: it must be neither too long nor too short. If it is too short, mechanical stability is not guaranteed. If it is too long, the product is too expensive since a long hardening time does not improves characteristics any further.

A special importance is attributed to the flame retardation of plastics under the heading of technical safety within the public realm. Work is being carried out in BAM to clarify and understand the burning and flame retardation mechanisms of plastics where thermal decomposition of plastics and pyrolysis products are investigated and the fire risk is determined. The findings should be integrated into the development of new flame-retarded products.

Information:
Priv.-Doz. Dr. habil. Andreas Schönhals,
Chairman of the BAM Working Group "Polymers",
Division VI.5 Polymer Surfaces
Phone: +49 30 8104-3384
Email: andreas.schoenhals@bam.de

Dr. Ulrike Rockland | idw
Further information:
http://www.bam.de

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>