Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing new piezoelectric materials

24.10.2007
Polymer-based piezoelectric materials are currently the object of great interest in the world of industry because they enable their use in new applications in sectors such as transport and aeronautics, amongst others.

A definition of piezoelectricity – piezo being Greek for “subjected to pressure” - is the generation of the electrical polarisation of a material as a response to mechanical strain. This phenomenon is known as direct effect or generator effect and is applied fundamentally in the manufacture of sensors (mobile phone vibrators, lighters, etc.). In these cases piezoelectric materials, also used in actuators, undergo an inverse or motor effect, i.e. a mechanical deformation due to the application of an electrical signal.

Over the last four decades perovskita-type ceramics (zirconium or lead titanate ceramics) have been mainly used as piezoelectric materials in acoustic applications, amongst other reasons because of their high elastic modularity, their high dielectric constant and their low dielectric and elastic losses. However, and although they have also been used successfully in many other applications, ceramic piezoelectric materials have some important drawbacks: limited deformation, fragility and a high mass density that limit their use in sectors such as aeronautics or electrical-electronics. These limitations can be overcome in specific applications using polymeric piezoelectric materials instead of ceramic ones.

The only piezoelectric polymer that currently exists on the market is Polyvinylidene Difluoride (PVDF). This semi-crystalline polymer is characterised by having very good piezoelectric properties, but only to 90 ºC. Thus the interest in synthesising new piezoelectric polymers capable of maintaining their properties at greater temperatures.

Patent applied for

At GAIKER-IK4 we have developed amorphous piezoelectric polymers to be employed in conditions of extreme temperature where semi-crystalline polymers cannot be used. To this end, and after prior work with different materials, the use of polymides was opted for, given their excellent thermal, mechanical and dielectric properties. Various dipolar groups (-CN, -SO2-, -CF3) have been incorporated into the molecule, varying the number and position of these groups in order to fix their physical - and consequently, their piezoelectric - properties. Moreover, it has been shown that the value for the temperature of vitreous transition is fundamental for these polymides, as this determines the temperature at which piezoelectric properties are lost. Specifically, this type of polymers show piezoelectric stability up to temperatures of 150ºC and do not begin to degrade until above 400 ºC.

We have been involved in this line of research at the Plastics and Composites Area for a number of years now and, particularly as a result of the research carried out jointly with the Department of Physical Chemistry at the University of the Basque Country (UPV/EHU), we have recently applied for a patent in the Oficina Española de Patentes y Marcas on “Polymides with piezoelectric properties”.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1491&hizk=I

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>