Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Designing new piezoelectric materials

Polymer-based piezoelectric materials are currently the object of great interest in the world of industry because they enable their use in new applications in sectors such as transport and aeronautics, amongst others.

A definition of piezoelectricity – piezo being Greek for “subjected to pressure” - is the generation of the electrical polarisation of a material as a response to mechanical strain. This phenomenon is known as direct effect or generator effect and is applied fundamentally in the manufacture of sensors (mobile phone vibrators, lighters, etc.). In these cases piezoelectric materials, also used in actuators, undergo an inverse or motor effect, i.e. a mechanical deformation due to the application of an electrical signal.

Over the last four decades perovskita-type ceramics (zirconium or lead titanate ceramics) have been mainly used as piezoelectric materials in acoustic applications, amongst other reasons because of their high elastic modularity, their high dielectric constant and their low dielectric and elastic losses. However, and although they have also been used successfully in many other applications, ceramic piezoelectric materials have some important drawbacks: limited deformation, fragility and a high mass density that limit their use in sectors such as aeronautics or electrical-electronics. These limitations can be overcome in specific applications using polymeric piezoelectric materials instead of ceramic ones.

The only piezoelectric polymer that currently exists on the market is Polyvinylidene Difluoride (PVDF). This semi-crystalline polymer is characterised by having very good piezoelectric properties, but only to 90 ºC. Thus the interest in synthesising new piezoelectric polymers capable of maintaining their properties at greater temperatures.

Patent applied for

At GAIKER-IK4 we have developed amorphous piezoelectric polymers to be employed in conditions of extreme temperature where semi-crystalline polymers cannot be used. To this end, and after prior work with different materials, the use of polymides was opted for, given their excellent thermal, mechanical and dielectric properties. Various dipolar groups (-CN, -SO2-, -CF3) have been incorporated into the molecule, varying the number and position of these groups in order to fix their physical - and consequently, their piezoelectric - properties. Moreover, it has been shown that the value for the temperature of vitreous transition is fundamental for these polymides, as this determines the temperature at which piezoelectric properties are lost. Specifically, this type of polymers show piezoelectric stability up to temperatures of 150ºC and do not begin to degrade until above 400 ºC.

We have been involved in this line of research at the Plastics and Composites Area for a number of years now and, particularly as a result of the research carried out jointly with the Department of Physical Chemistry at the University of the Basque Country (UPV/EHU), we have recently applied for a patent in the Oficina Española de Patentes y Marcas on “Polymides with piezoelectric properties”.

Irati Kortabitarte | alfa
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>