Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing new piezoelectric materials

24.10.2007
Polymer-based piezoelectric materials are currently the object of great interest in the world of industry because they enable their use in new applications in sectors such as transport and aeronautics, amongst others.

A definition of piezoelectricity – piezo being Greek for “subjected to pressure” - is the generation of the electrical polarisation of a material as a response to mechanical strain. This phenomenon is known as direct effect or generator effect and is applied fundamentally in the manufacture of sensors (mobile phone vibrators, lighters, etc.). In these cases piezoelectric materials, also used in actuators, undergo an inverse or motor effect, i.e. a mechanical deformation due to the application of an electrical signal.

Over the last four decades perovskita-type ceramics (zirconium or lead titanate ceramics) have been mainly used as piezoelectric materials in acoustic applications, amongst other reasons because of their high elastic modularity, their high dielectric constant and their low dielectric and elastic losses. However, and although they have also been used successfully in many other applications, ceramic piezoelectric materials have some important drawbacks: limited deformation, fragility and a high mass density that limit their use in sectors such as aeronautics or electrical-electronics. These limitations can be overcome in specific applications using polymeric piezoelectric materials instead of ceramic ones.

The only piezoelectric polymer that currently exists on the market is Polyvinylidene Difluoride (PVDF). This semi-crystalline polymer is characterised by having very good piezoelectric properties, but only to 90 ºC. Thus the interest in synthesising new piezoelectric polymers capable of maintaining their properties at greater temperatures.

Patent applied for

At GAIKER-IK4 we have developed amorphous piezoelectric polymers to be employed in conditions of extreme temperature where semi-crystalline polymers cannot be used. To this end, and after prior work with different materials, the use of polymides was opted for, given their excellent thermal, mechanical and dielectric properties. Various dipolar groups (-CN, -SO2-, -CF3) have been incorporated into the molecule, varying the number and position of these groups in order to fix their physical - and consequently, their piezoelectric - properties. Moreover, it has been shown that the value for the temperature of vitreous transition is fundamental for these polymides, as this determines the temperature at which piezoelectric properties are lost. Specifically, this type of polymers show piezoelectric stability up to temperatures of 150ºC and do not begin to degrade until above 400 ºC.

We have been involved in this line of research at the Plastics and Composites Area for a number of years now and, particularly as a result of the research carried out jointly with the Department of Physical Chemistry at the University of the Basque Country (UPV/EHU), we have recently applied for a patent in the Oficina Española de Patentes y Marcas on “Polymides with piezoelectric properties”.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1491&hizk=I

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>